scholarly journals Effect of Drought Stress at Supraoptimal Temperature on Polyamine Concentrations in Transgenic Soybean with Increased Proline Levels

2006 ◽  
Vol 61 (11-12) ◽  
pp. 833-839 ◽  
Author(s):  
Livia Simon-Sarkadi ◽  
Gábor Kocsy ◽  
Ágnes Várhegyi ◽  
Gábor Galiba ◽  
Jacoba A. de Ronde

Abstract The effect of drought stress at supraoptimal temperature on free proline and polyamine levels was compared in wild type and transgenic soybean (Glycine max cv. Ibis) plants having increased proline levels. Since glutamate and arginine are precursors of both proline and polyamines, it was assumed that the genetic manipulation of proline levels would also affect the polyamine levels. The proline and spermine concentrations increased, while the putrescine concentration generally decreased or did not change after the treatments in both genotypes. Following drought higher proline and lower spermine levels were detected in the transgenic plants compared to the wild type ones, which could be explained by the increased use of their common precursors for proline biosynthesis in the transgenic plants.

Author(s):  
Thi Thanh Nhan Pham ◽  
Huu Quan Nguyen ◽  
Thi Ngoc Lan Nguyen ◽  
Xuan Tan Dao ◽  
Danh Thuong Sy ◽  
...  

The dehydration responsive element binding (DREB) is a plant protein subfamily expressed when soybean plants face abiotic stresses. These DREB proteins are also considered to activate the transcription of drought-resistant genes. In this study, we present the determined results of relationships between overexpression of Glycine max DREB2 (GmDREB2) with the transcription level of Glycine max pyrroline-5-carboxylate synthetase (GmP5CS) gene, proline accumulation and drought tolerant ability transgenic soybean plants as the basis for selection of transgenic lines with high drought tolerance. GmDREB2 was inserted into a plant transgenic vector and the 35S-GmDREB2-cmyc construct was transferred into the soybean plants by Agrobacterium-mediated transformation. Recombinant GmDREB2 protein with a molecular weight of approximately 20 kDa was expressed in four transgenic soybean lines in the T1 generation. The GmP5CS gene was shown to have significantly (P<0.05) increased expression in the T2 transgenic soybean lines and higher than compared to non-transgenic plants with considering both in well watered condition and stressed conditions were from 1.06 to 1.31-fold and 1.37 to 1.95-fold, respectively. The proline content of four transgenic soybean lines increased 155.81% to 187.42 % after five days in drought-stress conditions and increased from 180.52 % to 233.74 % after nine days under drought-stress conditions (P<0.05). Therefore, the overexpression of GmDREB2 resulted in increasing transcription level of P5CS gene, proline accumulation and drought-stress tolerance of the transgenic soybean plants. The GmDREB2 transformation into soybean plants was confirmed by the results of genetically modified lines in the T2 generation (T2-1, T2-6, T2-7, and T2-8) with higher drought tolerant ability than those of non-transgenic plants.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


Author(s):  
A. G. Komisarenko ◽  
S. I. Mykhalska

Aim. The investigation of the T3 transgenic sunflower plants osmotic tolerance there were developed. The levels of free proline in plant shoots and roots were estimated. Methods. Mature sunflower plants (T3 and wild type) were cultured in standard pots. Those genotypes were tested during 12-day artificial drying. The levels of free proline in plant shoots and roots were measured. Results. The proline contents in transgenic plants preferred those parameters of control plants both under normal and stress conditions. The proline levels in shoots and roots increased in all genotypes cultivated under stress conditions. The shoot/root proline ratio of control plants was constant during whole experiment, while in T3 plants this parameter changed due to high elevation in roots. Conclusions. The changes of shoot/root proline ratio of T3 plants were the result of free proline transfer among plant organs. Keywords: Helianthus annuus L., transgenic plants, L-proline, shoot/root proline ratio.


2020 ◽  
Author(s):  
Reuben Tayengwa ◽  
Pushpa Sharma-Koirala ◽  
Courtney F. Pierce ◽  
Breanna E Werner ◽  
Michael M Neff

Abstract Background The 29-member Arabidopsis AHL gene family is classified into three main classes based on nucleotide and protein sequence evolutionary differences. These differences include the presence or absence of introns, type and/or number of conserved AT-hook and PPC domains. AHL gene family members are divided into two phylogenetic clades, Clade-A and Clade-B. A majority of the 29 members remain functionally uncharacterized. Furthermore, the biological significance of the DNA and peptide sequence diversity, observed in the conserved motifs and domains found in the different AHL types, is a subject area that remains largely unexplored. Results Transgenic plants overexpressing AtAHL20 flowered later than the wild type. Transcript accumulation analyses showed that 35S:AtAHL20 plants contained reduced FT, TSF, AGL8 and SPL3 mRNA levels. Similarly, overexpression of AtAHL20’s orthologue in Camelina sativa, Arabidopsis’ closely related Brassicaceae family member species, conferred a late-flowering phenotype via suppression of CsFT expression. In addition, 35S:AtAHL20 seedlings exhibited suppressed hypocotyl length and enhanced water stress tolerance. However, overexpression of an aberrant AtAHL20 gene harboring a missense mutation in the AT-hook domain’s highly conserved R-G-R core motif abolished the late-flowering phenotype. Data from targeted yeast-two-hybrid assays showed that AtAHL20 interacted with itself and several other Clade-A Type-I AHLs which have been previously implicated in flowering-time regulation: AtAHL22, AtAHL27 and AtAHL29. Conclusion We showed via gain-function analysis that AtAHL20 is a negative regulator of FT expression, as well as other downstream flowering time regulating genes. A similar outcome in Camelina sativa transgenic plants overexpressing CsAHL20 suggest that this is a conserved function. Additionally, overexpression of AtAHL20 resulted in shorter hypocotyls and enhanced drought stress tolerance compared to wild-type plants. Our results demonstrate that AtAHL20 is a negative regulator of transition to flowering and hypocotyl elongation, but a positive regulator of drought stress tolerance.


2017 ◽  
Vol 9 (7) ◽  
pp. 22 ◽  
Author(s):  
Fizal Nabbie ◽  
Jordan Smith ◽  
Serhiy Hnatyshyn ◽  
Bethanne Warrack ◽  
Huidong Gu ◽  
...  

Plants evolve to adapt to environmental stresses, including changes at the genetic and molecular levels. For bioengineers to utilize genetic manipulation to build tolerance into crops, a better understanding of the mechanism is needed. Published studies have demonstrated that 14-3-3 Lambda (14-3-3 Lambda) protein affect the phenylpropanoid (Pp) biosynthetic pathway and alters production of flavonoids and downstream compounds of importance for stress tolerance. The 14-3-3 family of proteins binds to many different client proteins and serves as signaling scaffolds. In this study 14-3-3 Lambda knockout mutants were used to investigate changes in metabolite accumulation in the downstream Pp pathway. Amongst them are anthocyanins which are important antioxidants involved in a variety of plant functions including stress response. Investigating how drought stress influenced anthocyanin production identified nodes in the Pp pathway affected by 14-3-3 Lambda. A metabolomics analysis employing high resolution mass spectrometry (HRMS) and metabolomics software was used to identify metabolites in 14-3-3 knockout which changed relative to wild-type A. thaliana (Columbia-0) during drought stress. The metabolites Cy-3-p-coumaurolysinapoylsophoroside-5-diglucoside, 3-caffeoylferuloylsophoroside- 5-succinoylglucoside, 3-caffeoylferuloylsophoroside-5-malonyldiglucoside, 3-feruloylsophoroside-5-succinoyl glucoside, petunidin-3,5-O-diglucoside and malvidin-3-O-p-coumarylmonoglucoside show significant differences in their profiles ranging from 18- to > 500-fold between the Col-0 and 14-3-3 Lambda knockout in wet and dry groups. The findings suggest that 14-3-3 Lambda interacts along the CHS, and CHI nodes, which in turn regulate the downstream production of specific anthocyanins. The interaction of 14-3-3 Lambda with CHS was confirmed using co-immunoprecipitation and co-localization studies. This study supports the hypothesis that manipulation of gene expression of 14-3-3 Lambda can lead to development of drought tolerance in plants.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 170
Author(s):  
Zhanyu Chen ◽  
Xiaokun Fang ◽  
Xueshun Yuan ◽  
Yingying Zhang ◽  
Huiying Li ◽  
...  

Soybean (Glycine max) is one of the important oil crops worldwide. In recent years, environmental stresses such as drought and soil salinization have severely deteriorated soybean yield and quality. We investigated the overexpression of the transcription factor GmTGA15 in response to drought stress in transgenic soybean hairy roots and Arabidopsis plants. The results of quantitative real time polymerase chain reaction (qRT-PCR) analyses showed that GmTGA15 was greatly induced by salt, PEG6000, salicylic acid (SA), gibberellic acid (GA), abscisic acid (ABA), and methyl jasmonate (MeJA) in soybean. In response to drought stress, the contents of both chlorophyll and proline were significantly increased, while the content of malondialdehyde (MDA) was significantly decreased in the soybean hairy roots with the overexpression of GmTGA15 in comparison to wild type (WT). Under the simulated drought conditions, the transgenic Arabidopsis plants showed significantly longer roots and lower mortality than that of the wild type. These results suggest that GmTGA15 promotes tolerance to drought stress in both soybean and Arabidopsis plants. This study provides the scientific evidence for further functional analysis of soybean TGA transcription factors in drought stress and the breeding of drought-resistance crops.


2019 ◽  
Author(s):  
Wilton Mbinda ◽  
Christina Dixelius ◽  
Richard Oduor

AbstractKey message Drought stress in sweetpotato could be overcome by introducing XvSap1 gene from Xerophyta viscosa.Drought stress often leads to reduced yields and is perilous delimiter for expanded cultivation and increased productivity of sweetpotato. Cell wall stabilization proteins have been identified to play a pivotal role in mechanical stabilization during desiccation stress mitigation. They are involved in myriad cellular processes that modify the cell wall properties to tolerate the mechanical stress during dehydration in plants. This provides a possible approach to engineer crops for enhanced stable yields under adverse climatic conditions. In this study, we introduced the XvSap1 gene isolated from Xerophyta viscosa, a resurrection plant into sweetpotato by Agrobacterium-mediated transformation. Detection of the transgene by PCR coupled with Southern blot revealed the integration of XvSap1 in the three independent events. Sweetpotato plants expressing the XvSap1 gene exhibited superior growth performance such as shoot length, number of leaves and yield than the wild type plants under drought stress. Quantitative real time-PCR results confirmed higher expression of the XvSap1 gene in XSP1 transgenic plants imposed with drought stress. In addition, the transgenic plants had increased levels of chlorophyll, free proline and relative water content but malonaldehyde content was decreased under drought stress compared to wild type plants. Conjointly, our findings show that XvSap1 can enhance drought resilience without causing deleterious phenotypic and yield changes, thus providing a promising candidate target for improving the drought tolerance of sweetpotato cultivars through genetic engineering. The transgenic drought tolerant sweetpotato line provides a valuable resource as drought tolerant crop on arid lands of the world.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yang Liu ◽  
Xinzhuan Yao ◽  
Lu Zhang ◽  
Litang Lu ◽  
Renxiang Liu

Drought is the primary disaster that endangers agricultural production, including animal husbandry, and affects the distribution, growth, yield, and quality of crops. Previous study had revealed that DIP, as a potential regulator of DBF activity, played an important role in response to drought stress in maize. In this study, a total of 67 DIPs were identified from seventeen land plants, including six tobacco DIPs (NtDIPs). NtDIP6 gene was further selected as a candidate gene for subsequent experiments based on the phylogenetic analysis and structural analysis. The transgenic tobacco and poplar plants over-expressing NtDIP6 gene were generated using the Agrobacterium- mediated method. Although there was not phenotypic difference between transgenic plants and wild-type plants under normal conditions, overexpression of the NtDIP6 gene in transgenic tobacco and poplar plants enhanced the drought tolerance under drought treatments in comparison with the wild type. The content of antioxidant defense enzymes peroxidase (POD), catalase (CAT), and the photosynthetic rate increased in NtDIP6-Ox transgenic tobacco and poplar plants, while the content of malondialdehyde decreased, suggesting that the overexpression of NtDIP6 enhances the antioxidant capacity of transgenic poplar. Furthermore, the results of qRT-PCR showed that the level of expression of drought-related response genes significantly increased in the NtDIP6-Ox transgenic plants. These results indicated that NtDIP6, as a positive response regulator, improves drought stress tolerance by scavenging superoxide via the accumulation of antioxidant defense enzymes.


2016 ◽  
Vol 39 (8) ◽  
pp. 1805-1817 ◽  
Author(s):  
Hagai Cohen ◽  
Ofer M. Shir ◽  
Yang Yu ◽  
Wensheng Hou ◽  
Shi Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document