Regenerative Engineering: Fulfilling the Tissue Engineering Promise to Bone Regeneration

Author(s):  
Tao Jiang ◽  
Jennifer I. Rulka ◽  
Cato T. Laurencin
2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Weigang Li ◽  
Wenbin Liu ◽  
Wei Wang ◽  
Jiachen Wang ◽  
Tian Ma ◽  
...  

Abstract Background The repair of critical-sized bone defects is always a challenging problem. Electromagnetic fields (EMFs), used as a physiotherapy for bone defects, have been suspected to cause potential hazards to human health due to the long-term exposure. To optimize the application of EMF while avoiding its adverse effects, a combination of EMF and tissue engineering techniques is critical. Furthermore, a deeper understanding of the mechanism of action of EMF will lead to better applications in the future. Methods In this research, bone marrow mesenchymal stem cells (BMSCs) seeded on 3D-printed scaffolds were treated with sinusoidal EMFs in vitro. Then, 5.5 mm critical-sized calvarial defects were created in rats, and the cell scaffolds were implanted into the defects. In addition, the molecular and cellular mechanisms by which EMFs regulate BMSCs were explored with various approaches to gain deeper insight into the effects of EMFs. Results The cell scaffolds treated with EMF successfully accelerated the repair of critical-sized calvarial defects. Further studies revealed that EMF could not directly induce the differentiation of BMSCs but improved the sensitivity of BMSCs to BMP signals by upregulating the quantity of specific BMP (bone morphogenetic protein) receptors. Once these receptors receive BMP signals from the surrounding milieu, a cascade of reactions is initiated to promote osteogenic differentiation via the BMP/Smad signalling pathway. Moreover, the cytokines secreted by BMSCs treated with EMF can better facilitate angiogenesis and osteoimmunomodulation which play fundamental roles in bone regeneration. Conclusion In summary, EMF can promote the osteogenic potential of BMSCs and enhance the paracrine function of BMSCs to facilitate bone regeneration. These findings highlight the profound impact of EMF on tissue engineering and provide a new strategy for the clinical treatment of bone defects.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2100
Author(s):  
Xu Zhang ◽  
Bowen Tan ◽  
Yanting Wu ◽  
Min Zhang ◽  
Jinfeng Liao

Photothermal treatment (PTT) is a promising strategy to deal with multidrug-resistant bacteria infection and promote tissue regeneration. Previous studies demonstrated that hyperthermia can effectively inhibit the growth of bacteria, whereas mild heat can promote cell proliferation, further accelerating wound healing and bone regeneration. Especially, hydrogels with photothermal properties could achieve remotely controlled drug release. In this review, we introduce a photothermal agent hybrid in hydrogels for a photothermal effect. We also summarize the potential mechanisms of photothermal hydrogels regarding antibacterial action, angiogenesis, and osteogenesis. Furthermore, recent developments in photothermal hydrogels in wound healing and bone regeneration applications are introduced. Finally, future application of photothermal hydrogels is discussed. Hydrogels with photothermal effects provide a new direction for wound healing and bone regeneration, and this review will give a reference for the tissue engineering.


Author(s):  
Christopher Ogunsalu ◽  
Festus I. Arunaye ◽  
Chukudozia Ezeokoli ◽  
Michael Gardner ◽  
Michael Rohrer ◽  
...  

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 571-599
Author(s):  
Ricardo Donate ◽  
Mario Monzón ◽  
María Elena Alemán-Domínguez

AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.


2013 ◽  
Vol 114 (12) ◽  
pp. 2729-2737 ◽  
Author(s):  
Xuefeng Hu ◽  
Ping Zhang ◽  
Zhenjie Xu ◽  
Hongdong Chen ◽  
Xin Xie

2022 ◽  
Author(s):  
Ting Song ◽  
Jianhua Zhou ◽  
Ming Shi ◽  
Liuyang Xuan ◽  
Huamin Jiang ◽  
...  

Scaffold microstructure is important for bone tissue engineering. Failure to synergistically imitate the hierarchical microstructure of bone component, such as osteon with concentric multilayers assembled by nanofibers, hindered the performance...


2021 ◽  
Vol 17 (1) ◽  
pp. 015003
Author(s):  
Lya Piaia ◽  
Simone S Silva ◽  
Joana M Gomes ◽  
Albina R Franco ◽  
Emanuel M Fernandes ◽  
...  

Abstract Bone regeneration and natural repair are long-standing processes that can lead to uneven new tissue growth. By introducing scaffolds that can be autografts and/or allografts, tissue engineering provides new approaches to manage the major burdens involved in this process. Polymeric scaffolds allow the incorporation of bioactive agents that improve their biological and mechanical performance, making them suitable materials for bone regeneration solutions. The present work aimed to create chitosan/beta-tricalcium phosphate-based scaffolds coated with silk fibroin and evaluate their potential for bone tissue engineering. Results showed that the obtained scaffolds have porosities up to 86%, interconnectivity up to 96%, pore sizes in the range of 60–170 μm, and a stiffness ranging from 1 to 2 MPa. Furthermore, when cultured with MC3T3 cells, the scaffolds were able to form apatite crystals after 21 d; and they were able to support cell growth and proliferation up to 14 d of culture. Besides, cellular proliferation was higher on the scaffolds coated with silk. These outcomes further demonstrate that the developed structures are suitable candidates to enhance bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document