scholarly journals Technologies of bearings systems production from composite materials by polyester resin injection into the closed mold

Author(s):  
A.N. Turenko ◽  
◽  
A.V. Uzhva ◽  
A.A. Cheban ◽  
A.V. Sergienko ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4273
Author(s):  
Jian Zhang ◽  
Xiaojun Wang ◽  
Xinjun Fu

Chopped carbon fiber-reinforced low-density unsaturated polyester resin (CCFR-LDUPR) composite materials with light weight and high mechanical properties were prepared at low temperature and under the synergistic action of methyl ethyl ketone peroxide (MEKP-II) and cobalt naphthenate. Optimal preparation conditions were obtained through an orthogonal experiment, which were preparation temperature at 58.0 °C, 2.00 parts per hundred of resin (phr) of NH4HCO3, 4.00 phr of chopped carbon fibers (CCFs) in a length of 6.0 mm, 1.25 phr of initiator and 0.08 phr of cobalt naphthenate. CCFR-LDUPR composite sample presented its optimal properties for which the density (ρ) was 0.58 ± 0.02 g·cm−3 and the specific compressive strength (Ps) was 53.56 ± 0.83 MPa·g−1·cm3, which is 38.9% higher than that of chopped glass fiber-reinforced low-density unsaturated polyester resin (CGFR-LDUPR) composite materials. Synergistic effects of initiator and accelerator accelerated the specific polymerization of resin in facile preparation at low temperature. Unique “dimples”, “plate microstructure” and “surface defect” fabricated the specific microstructure of the matrix of CCFR-LDUPR composite samples, which was different from that of cured unsaturated polyester resin (UPR) with “body defect” or that of CGFR-LDUPR with coexistence of “surface defect” and “body defect”.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012033
Author(s):  
M Sadashiva ◽  
S Praveen Kumar ◽  
M K Yathish ◽  
V T Satish ◽  
MR Srinivasa ◽  
...  

Abstract The extensive applications of hybrid composite materials in the field of transportation and structural domine provide prominent advantages in the order of stiffness, strength even cost. However extend the advantages of hybrid campsites in several field such as aviation and marine even more additional properties should be inculcate in them. During production of such profitable composites poses some problems at time at decompose and processing. It’s better to develop environment friendly and reusable composites, bio hybrid composite materials such of the one. In this paper, focused on development of Eco-friendly hybrid bio composites with the ingredients of drumstick fibers, glass fiber along with polyester resin. This hybrid bio composites subjected to bending test and evaluate the characteristics of bending properties, this research evident that bending characteristics of hybrid composites with longitudinal fiber orientation better than transverse.


DYNA ◽  
2020 ◽  
Vol 87 (212) ◽  
pp. 251-258
Author(s):  
Jorge Antonio Velasco Parra ◽  
Bladimir A. Ramón Valencia ◽  
William Javier Mora Espinosa

In the present investigation an alternative of recycling was evaluated for the residues derived from defective pieces of the ceramic industry, harnessing them as reinforcement in composite materials for the manufacture of parts used in the automotive sector. Sintered clay microparticles to 10% p/p were mixed in an unsaturated polyester resin matrix, through the cast molding technique. Bending tests were performed that showed an elastic-linear behavior, typical of a fragile material. The structure was analyzed through scanning electron microscopy, checking the fragile failure mechanism and a good dispersion of the microparticles. A simulation was carried out with the finite element method, for the design of a motorcycle brake lever, with results that demonstrate a better distribution of stresses and reduction in mass with respect to the original part. Finally, a prototype brake lever was manufactured using computationally validated geometry.


2013 ◽  
Vol 837 ◽  
pp. 296-301
Author(s):  
Sławomir Zolkiewski

The fibre-metal laminates made of a steel plate and fibreglass laminate plate were tested in the special laboratory stands. Epoxy resin and polyester resin were used as matrix to fabricate the composites. The fibre-metal laminates combine advantages of metals and laminates. These materials have very good force versus displacement characteristics and overall mechanical properties. They are very popular and widely applied in technical systems. They can be put to use in connecting materials made of various fabrics, connecting high number layer laminates and most of all connecting metals and laminates. In this paper there are the results of testing fibrous composite materials connected in bolt joints presented. Composite materials reinforced with fiberglass, carbon and aramid fibers are considered. The impact of number of applied bolts in a joint on strength properties was investigated. The connections by means of eight or sixteen bolts were compared. A major problem of modelling the composites is assuming physical and material parameters of the analyzed elements.


2013 ◽  
Vol 550 ◽  
pp. 9-16
Author(s):  
Kamal Ait Tahar ◽  
R. Bahar

Currently, the composite materials make important great strides, considering their high mechanical properties. The studies relating to the conceptual, technical aspect and modeling of their mechanical behavior are more than desirable. The mechanical properties of the composite material depend on several factors as the nature of fibers, the fiber/matrix ratio, compatibility, homogeneity... In this study, we present the results of an experimental analysis of the behavior of the composite material, under a static and a dynamic loading. The composite material is composed respectively of the glass and metal fiber reinforcement. A various dimensions of the mesh are considering. The resin used is polyester Resow 55 E. The dynamic test ( Knoop test) is carried out on various specimens made up of an polyester resin RESOW 55 E reinforced with varied powder nature. It makes it possible to measure the hardness of composite materials. The analysis of the results shows clearly that the mechanical properties are strongly influenced by the dimensions of the elementary mesh of the fiber grid reinforcement. Based on experimental results, a Weibull modulus has been established for each specimen.


2021 ◽  
Vol 328 ◽  
pp. 07001
Author(s):  
Anis Arendra ◽  
Rifky Yusron ◽  
Teguh Prasetyo

Agricultural waste such as sugarcane and paddy are common during harvesting to production process. Sometimes they burned after the harvest process, as consequently the environmental problem got multiply. Demand for Composite Material got inflate recently, because they are lighter and stronger than Polyethylene Plastic. Filler in composite materials is expensive and requires precise design. The aim of this research is to create cheap and eco-friendly composite materials, besides raised value of agricultural waste. The composite material using sugarcane bagasse as fibre, paddy chaff powder applied as filler and polyester resin as matrix. In this study, we varied the fibre direction with composition of sugarcane bagasse and paddy chaff powder. In this research fibre direction has three levels they are 0, 45 and 90 degrees. Composition between sugarcane bagasse, paddy chaff powder and polyester resin ratio has three levels they are 15:15:70, 12.5:12.5:75 and 10:10:80. ANOVA test shown fibre direction has significant influence to ability of the material to absorb impact energy 78.14 percent than fibre composition 12.10 percent. The highest impact absorb value is 0.3 degrees Joule on composition ratio paddy chaff: sugarcane: polyester resin is 15:15:70 and 45 degrees fibre direction.


2019 ◽  
Vol 391 ◽  
pp. 30-35
Author(s):  
Iran Rodrigues de Oliveira ◽  
José Vieira da Silva ◽  
E.M. Ascendino Pereira ◽  
Sandro Campos Amico ◽  
A.G. Barbosa de Lima ◽  
...  

Resin transfer molding (RTM) is one technique that has been used to produce polymer composites, which consists in injecting a thermoset pre-catalysed resin into a closed mold containing a dry fiber preform. In this sense, this study aims to investigate the effect of the calcium carbonate content (CaCO3) in the polyester resin during the RTM process. Several experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions 320 x 150 x 3.6 mm, at room temperature, and different injection pressure (0.75 bar) and CaCO3content (0, 10, 20, 30 and 40%). Results of the physical parameters such as viscosity, permeability, and mobility, and flow front position of the resin into the mold along the RTM process are presented and analyzed. From the results was concluded that the higher the injection pressure and lower CaCO3content into the resin, the lower filling time.


2021 ◽  
Vol 31 (4) ◽  
pp. 237-242
Author(s):  
Lakhemissi Touam ◽  
Semcheddine Derfouf

Improving the mechanical and physical properties of bio-composite materials involves the incorporation of plant fibers such as Jute, Hemp, Kenaf, Ramie, Sisal, Linen, etc. The existence of Diss grass (Ampelodesmos mauritanicus) in abundance in the east of Algeria especially in Khenchela region and taking into account their mechanical resistance and their low density, which justifies their choice of use in composite materials. Tensile and hardness tests for different volume fractions (from 05% to 20%) of short fibers of Diss are performed. The increase in fiber content and their treatment improves the mechanical characteristics of the composite materials. These concentration levels are added to a Polyester resin matrix. Our work relates to the study of a composite material reinforced by a vegetable fiber of which different volume ratio of short Diss fiber are considered. The results collected are purely experimental.


1998 ◽  
Vol 30 (4) ◽  
pp. 230-233
Author(s):  
L. G. Glukhova ◽  
S. G. Kononenko ◽  
O. M. Sladkov

Sign in / Sign up

Export Citation Format

Share Document