A comprehensive analysis of the AIP mutation positive pituitary tumour microenvironment: role of stromal cells and the pro-inflammatory cytokine network

2017 ◽  
Author(s):  
Sayka Barry ◽  
Antonia Solomou ◽  
L Vignola ◽  
David Collier ◽  
Eivind Carlsen ◽  
...  
2020 ◽  
Vol 28 ◽  
Author(s):  
Rama Rao Malla ◽  
Gugalavath Shailender ◽  
Mohammad Amjad Kamal

: Tumour microenvironment (TME) is a resident of a variety of cells, which devoted to the heterogeneous population of the tumour. TME establishes a communication network for crosstalk and signalling between tumour cells, stroma, and other interstitial cells. The cross-communication drives the reprogramming of TME cells, which promote cancer progression and metastasis via diverse signalling pathways. Recently, TME-derived exosomes are recognized as critical communicators of TME cell reprogramming. This review addresses the role of TME-derived exosomes in the modulation of stroma, including reprogramming the stromal cells, ECM and tumour cell metabolism, as well as neoplastic transformation. Subsequently, we described the role of exosomes in pre-metastatic niche development, maintenance of stemness and tumour vasculature as well as development of drug resistance. We also explored tumour-derived exosomes in precision, including diagnosis, drug delivery, and vaccine development. We discussed the currently established bioengineered exosomes as carriers for chemotherapeutic drugs, RNAi molecules, and natural compounds. Finally, we presented tetraspanin and DNAbased precision methods for the quantification of tumour-derived exosomes. Overall, TME-derived exosome-mediated reprogramming of TME and precision strategies could illuminate the potential mechanisms for targeted therapeutic intervention.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3311
Author(s):  
Zaira Boussadia ◽  
Adriana Rosa Gambardella ◽  
Fabrizio Mattei ◽  
Isabella Parolini

The mechanisms of melanoma progression have been extensively studied in the last decade, and despite the diagnostic and therapeutic advancements pursued, malignant melanoma still accounts for 60% of skin cancer deaths. Therefore, research efforts are required to better define the intercellular molecular steps underlying the melanoma development. In an attempt to represent the complexity of the tumour microenvironment (TME), here we analysed the studies on melanoma in acidic and hypoxic microenvironments and the interactions with stromal and immune cells. Within TME, acidity and hypoxia force melanoma cells to adapt and to evolve into a malignant phenotype, through the cooperation of the tumour-surrounding stromal cells and the escape from the immune surveillance. The role of tumour exosomes in the intercellular crosstalk has been generally addressed, but less studied in acidic and hypoxic conditions. Thus, this review aims to summarize the role of acidic and hypoxic microenvironment in melanoma biology, as well as the role played by melanoma-derived exosomes (Mexo) under these conditions. We also present a perspective on the characteristics of acidic and hypoxic exosomes to disclose molecules, to be further considered as promising biomarkers for an early detection of the disease. An update on the use of exosomes in melanoma diagnosis, prognosis and response to treatment will be also provided and discussed.


Gut Microbes ◽  
2014 ◽  
Vol 5 (4) ◽  
pp. 10-9 ◽  
Author(s):  
Andrew J McDermott ◽  
Charles R Frank ◽  
Nicole R Falkowski ◽  
Roderick A McDonald ◽  
Vincent B Young ◽  
...  

Gut ◽  
2020 ◽  
pp. gutjnl-2020-321731
Author(s):  
Dominik Aschenbrenner ◽  
Maria Quaranta ◽  
Soumya Banerjee ◽  
Nicholas Ilott ◽  
Joanneke Jansen ◽  
...  

ObjectiveDysregulated immune responses are the cause of IBDs. Studies in mice and humans suggest a central role of interleukin (IL)-23-producing mononuclear phagocytes in disease pathogenesis. Mechanistic insights into the regulation of IL-23 are prerequisite for selective IL-23 targeting therapies as part of personalised medicine.DesignWe performed transcriptomic analysis to investigate IL-23 expression in human mononuclear phagocytes and peripheral blood mononuclear cells. We investigated the regulation of IL-23 expression and used single-cell RNA sequencing to derive a transcriptomic signature of hyperinflammatory monocytes. Using gene network correlation analysis, we deconvolved this signature into components associated with homeostasis and inflammation in patient biopsy samples.ResultsWe characterised monocyte subsets of healthy individuals and patients with IBD that express IL-23. We identified autosensing and paracrine sensing of IL-1α/IL-1β and IL-10 as key cytokines that control IL-23-producing monocytes. Whereas Mendelian genetic defects in IL-10 receptor signalling induced IL-23 secretion after lipopolysaccharide stimulation, whole bacteria exposure induced IL-23 production in controls via acquired IL-10 signalling resistance. We found a transcriptional signature of IL-23-producing inflammatory monocytes that predicted both disease and resistance to antitumour necrosis factor (TNF) therapy and differentiated that from an IL-23-associated lymphocyte differentiation signature that was present in homeostasis and in disease.ConclusionOur work identifies IL-10 and IL-1 as critical regulators of monocyte IL-23 production. We differentiate homeostatic IL-23 production from hyperinflammation-associated IL-23 production in patients with severe ulcerating active Crohn’s disease and anti-TNF treatment non-responsiveness. Altogether, we identify subgroups of patients with IBD that might benefit from IL-23p19 and/or IL-1α/IL-1β-targeting therapies upstream of IL-23.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-323363
Author(s):  
Ester Pagano ◽  
Joshua E Elias ◽  
Georg Schneditz ◽  
Svetlana Saveljeva ◽  
Lorraine M Holland ◽  
...  

ObjectivePrimary sclerosing cholangitis (PSC) is in 70% of cases associated with inflammatory bowel disease. The hypermorphic T108M variant of the orphan G protein-coupled receptor GPR35 increases risk for PSC and ulcerative colitis (UC), conditions strongly predisposing for inflammation-associated liver and colon cancer. Lack of GPR35 reduces tumour numbers in mouse models of spontaneous and colitis associated cancer. The tumour microenvironment substantially determines tumour growth, and tumour-associated macrophages are crucial for neovascularisation. We aim to understand the role of the GPR35 pathway in the tumour microenvironment of spontaneous and colitis-associated colon cancers.DesignMice lacking GPR35 on their macrophages underwent models of spontaneous colon cancer or colitis-associated cancer. The role of tumour-associated macrophages was then assessed in biochemical and functional assays.ResultsHere, we show that GPR35 on macrophages is a potent amplifier of tumour growth by stimulating neoangiogenesis and tumour tissue remodelling. Deletion of Gpr35 in macrophages profoundly reduces tumour growth in inflammation-associated and spontaneous tumour models caused by mutant tumour suppressor adenomatous polyposis coli. Neoangiogenesis and matrix metalloproteinase activity is promoted by GPR35 via Na/K-ATPase-dependent ion pumping and Src activation, and is selectively inhibited by a GPR35-specific pepducin. Supernatants from human inducible-pluripotent-stem-cell derived macrophages carrying the UC and PSC risk variant stimulate tube formation by enhancing the release of angiogenic factors.ConclusionsActivation of the GPR35 pathway promotes tumour growth via two separate routes, by directly augmenting proliferation in epithelial cells that express the receptor, and by coordinating macrophages’ ability to create a tumour-permissive environment.


Author(s):  
Dariusz Szukiewicz ◽  
Aleksandra Stangret ◽  
Carmen Ruiz-Ruiz ◽  
Enrique G. Olivares ◽  
Olga Soriţău ◽  
...  

AbstractEndometriosis is a common chronic inflammatory condition in which endometrial tissue appears outside the uterine cavity. Because ectopic endometriosis cells express both estrogen and progesterone (P4) receptors, they grow and undergo cyclic proliferation and breakdown similar to the endometrium. This debilitating gynecological disease affects up to 15% of reproductive aged women. Despite many years of research, the etiopathogenesis of endometrial lesions remains unclear. Retrograde transport of the viable menstrual endometrial cells with retained ability for attachment within the pelvic cavity, proliferation, differentiation and subsequent invasion into the surrounding tissue constitutes the rationale for widely accepted implantation theory. Accordingly, the most abundant cells in the endometrium are endometrial stromal cells (EnSCs). These cells constitute a particular population with clonogenic activity that resembles properties of mesenchymal stem/stromal cells (MSCs). Thus, a significant role of stem cell-based dysfunction in formation of the initial endometrial lesions is suspected. There is increasing evidence that the role of epigenetic mechanisms and processes in endometriosis have been underestimated. The importance of excess estrogen exposure and P4 resistance in epigenetic homeostasis failure in the endometrial/endometriotic tissue are crucial. Epigenetic alterations regarding transcription factors of estrogen and P4 signaling pathways in MSCs are robust in endometriotic tissue. Thus, perspectives for the future may include MSCs and EnSCs as the targets of epigenetic therapies in the prevention and treatment of endometriosis. Here, we reviewed the current known changes in the epigenetic background of EnSCs and MSCs due to estrogen/P4 imbalances in the context of etiopathogenesis of endometriosis.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1239
Author(s):  
Leila Jahangiri ◽  
Tala Ishola ◽  
Perla Pucci ◽  
Ricky M. Trigg ◽  
Joao Pereira ◽  
...  

Cancer stem cells (CSCs) possess properties such as self-renewal, resistance to apoptotic cues, quiescence, and DNA-damage repair capacity. Moreover, CSCs strongly influence the tumour microenvironment (TME) and may account for cancer progression, recurrence, and relapse. CSCs represent a distinct subpopulation in tumours and the detection, characterisation, and understanding of the regulatory landscape and cellular processes that govern their maintenance may pave the way to improving prognosis, selective targeted therapy, and therapy outcomes. In this review, we have discussed the characteristics of CSCs identified in various cancer types and the role of autophagy and long noncoding RNAs (lncRNAs) in maintaining the homeostasis of CSCs. Further, we have discussed methods to detect CSCs and strategies for treatment and relapse, taking into account the requirement to inhibit CSC growth and survival within the complex backdrop of cellular processes, microenvironmental interactions, and regulatory networks associated with cancer. Finally, we critique the computationally reinforced triangle of factors inclusive of CSC properties, the process of autophagy, and lncRNA and their associated networks with respect to hypoxia, epithelial-to-mesenchymal transition (EMT), and signalling pathways.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Catherine A. Nikiel ◽  
Elfatih A. B. Eltahir

AbstractFor millennia the Nile supplied Egypt with more water than needed. As the population grew and the economy expanded, demand on water increased accordingly. Here, we present a comprehensive analysis to reconstruct how total demand on water outstripped supply of the Nile water in the late 1970s, starting from a surplus of about 20 km3 per year in the 1960s leading to a deficit of about 40 km3 per year by the late 2010s. The gap is satisfied by import of virtual water. The role of economic growth in driving per capita demand on water is quantified based on detailed analysis of water use by agriculture and other sectors. We develop and test an empirical model of water demand in Egypt that relates demand on water to growth rates in the economy and population. Looking forward, we project that within this decade of the 2020 s, under nominal scenarios of population and economic growth, Egypt is likely to import more virtual water than the water supplied by the Nile, bringing into question the historical characterization of Egypt as “the gift of the Nile”.


2020 ◽  
Vol 11 (11) ◽  
Author(s):  
Chunliang Shang ◽  
Jie Qiao ◽  
Hongyan Guo

AbstractThe pre-metastatic niche is a favorable microenvironment for the colonization of metastatic tumor cells in specific distant organs. Lipid droplets (LDs, also known as lipid bodies or adiposomes) have increasingly been recognized as lipid-rich, functionally dynamic organelles within tumor cells, immune cells, and other stromal cells that are linked to diverse biological functions and human diseases. Moreover, in recent years, several studies have described the indispensable role of LDs in the development of pre-metastatic niches. This review discusses current evidence related to the biogenesis, composition, and functions of LDs related to the following characteristics of the pre-metastatic niche: immunosuppression, inflammation, angiogenesis/vascular permeability, lymphangiogenesis, organotropism, reprogramming. We also address the function of LDs in mediating pre-metastatic niche formation. The potential of LDs as markers and targets for novel antimetastatic therapies will be discussed.


Sign in / Sign up

Export Citation Format

Share Document