scholarly journals The effects of recombinant human GH on promoting tumor growth depend on the expression of GH receptor in vivo

2011 ◽  
Vol 211 (3) ◽  
pp. 249-256 ◽  
Author(s):  
Yan Lin ◽  
Suyi Li ◽  
Peng Cao ◽  
Lu Cheng ◽  
Ming Quan ◽  
...  

Cancer-related malnutrition is a mortal threat to gastric carcinoma patients. However, conventional nutrition treatment is not effective for recovery. Recombinant human GH (rhGH) is widely accepted clinically to treat severe malnutrition caused by non-malignant diseases, but not approved to treat malignant diseases due to the safety concern. To explore the safety of rhGH on gastric cancer, we assessed the effect of rhGH on two tumor-bearing mice modelsin vivoestablished by human gastric adenoma cell lines of SGC-7901 and MKN-45. VEGF expression in tumor tissues was detected using immunohistochemistry. The expression of GH receptor (Ghr),Jak-2,Stat3,Vegf, Hif-1α, Fgf, andMmp-2was measured by RT-PCR and protein expression of STAT3, phosphorylated STAT3, VEGF, HIF-1α, and MMP-2 was measured by western blotting. The immunocytochemistry results showed that the GHR expression of SGC-7901 was strongly positive (GHR+++), while GHR expression of MKN-45 was regarded as negative (GHR−). After 14 days of rhGH treatment in SGC-7901 (GHR+++) tumor-bearing mice, we found that the tumor growth was significantly increased, and the expressions of downstream factors and VEGF were increased. However, in MKN-45 (GHR−) tumor-bearing mice, tumor growth was not significantly increased by rhGH, but tumor-free body weight was increased especially in high-dose rhGH-treated group (P<0.05). These findings suggest that the level of GHR expression is a key target that influences the effectiveness of rhGH on promoting the growth of gastric cancer and angiogenesis. rhGH may promote the activation of tumor angiogenesis factors through the Jak-2–STAT3 pathway.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2579-2579
Author(s):  
Meghaan Walsh ◽  
Aviva C Krauss ◽  
Jessica PE Davis ◽  
Su Young Kim ◽  
Martin Guimond ◽  
...  

Abstract BACKGROUND: PT-100 is an aminoboronic dipeptide that competitively inhibits dipeptidyl peptidases. While PT-100 has no direct effect on tumor cells in vitro, it exhibits potent antitumor effects in vivo. We have shown that female C57BL/6 (B6) mice with MB49 tumors, which naturally express the male minor histocompatibility antigen complex (HY), are primed to HY, but the immune response is insufficient to control tumor growth. In this study, we used the well-characterized HY antigen system to examine the immunomodulatory effects of PT-100 during treatment-induced tumor regression. METHODS: B6 female mice were inoculated subcutaneously with MB49 (106 cells) on day 0 and treated daily with PT-100 by gavage. For re-challenge experiments mice received high dose MB49 (3×106 cells) three weeks after complete regression of primary tumors. IFN-g ELISPOT was used to measure HY antigen specific T cell responses in the spleen and lymph nodes (LNs) during tumor growth. For adoptive transfer experiments, T cells were magnetic-bead purified from LNs and spleens of tumor-bearing PT-100 treated, tumor-bearing sham treated, or naïve mice and injected intravenously into Rag1−/− recipients (1.2×106 cells) which were then inoculated with high dose MB49. T cells were depleted with monoclonal antibodies to CD4 and CD8. Dendritic cells (DCs) were depleted with diphtheria toxin (DT) in bone marrow chimeras expressing the DT receptor under the CD11c promoter. DC activation examined by flow cytometry. For vaccine experiments, HY-expressing DCs were cultured from male B6 bone marrow and injected intraperitoneally (1×105 cells). RESULTS: PT-100 treatment resulted in complete regression of MB49, even when limited to the first week (days 3–7) during tumor progression. Treatment started later than week 1 was insufficient to establish consistent, complete tumor regression. High-dose re-challenge of PT-100 treated mice resulted in initial growth followed by regression without additional PT-100. IFN-gELISPOT revealed a robust response against HY in spleens of controls on day 17. Interestingly, PT-100 treated mice had quantitatively similar priming, but the response peaked earlier (day 10), just prior to tumor regression. Purified T cells from PT-100 treated donors collected on day 17 mediated markedly enhanced tumor protection compared to recipients of T cells from sham treated tumor-bearing mice despite significantly more HY-reactive cells in the spleen and LNs of sham treated-tumor bearing mice by that time. T cell or DC depletion independently abrogated the anti-tumor effect of PT-100 and treatment with PT-100 increased CD80 and CD86 expression on LN DC populations in vivo. Although HY DC vaccination does not affect tumor growth, supplementation of the DC vaccine with PT-100 mediated a therapeutic effect resulting in regression of well-established tumors. CONCLUSIONS: PT-100 establishes a consistent and potent antitumor effect against MB49 dependent on T cells and DCs. Treatment results in a memory response that is protective against high dose MB49 re-challenge. PT-100-induced tumor regression is associated with enhanced early tumor priming, associated with increases in activated DCs. T cells from PT-100 treated mice elicit superior protection upon adoptive transfer compared to shams, despite quantitatively less tumor-primed T cells, suggesting the PT-100 antitumor effect may involve a qualitative difference in T cell function. PT-100 given as an adjuvant to a DC vaccine results in increased potency and regression of established tumors. Inhibition of dipeptidyl peptidases modulate naturally occurring anti-tumor immune responses and contribute to the generation of a therapeutic anti-cancer vaccine.


2018 ◽  
Vol 399 (3) ◽  
pp. 293-303 ◽  
Author(s):  
Weifeng Yang ◽  
Houting Zhang ◽  
Lin Xin

AbstractNanoparticles (NPs) are recognized as an attractive vehicles for cancer treatment due to their targeted drug release. Gastric cancer is an important killer disease, and its therapy methods still need improvement. The NPs were prepared using a precipitation method, and were evaluated using transmission electron microscopy (TEM). MTT and Transwell assays were used to determine cell viability and apoptosis.In vivoexperiments were performed to validate the effects of NPs on tumor growth. Methioninase (METase)/5-Fu co-encaspulated NPs showed highest ζ size and lowest ζ potential than other NPs. The migration and tumorsphere formation ability of CD44(+) was stronger than CD44(−). The effects of METase/5-Fu co-encaspulated NPs on inhibition cell growth was stronger than that of 5-Fu encaspulated NPs, while HA coated NPs showed significant target ability than that NPs without HA. METase supplementation promoted the inhibition effect of 5-Fu on thymidylate synthetase (TS), as well as cell apoptosis. Thein vivoexperiments demonstrated that HA coated NPs significantly inhibited tumor growth. It was concluded that HA-coated NPs enhance the target ability, while METase/5-Fu co-encaspulated NPs promote the inhibition effects on tumor growth in gastric cancer.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2883 ◽  
Author(s):  
Cang Zhang ◽  
Xiaolan Zhang ◽  
Guangji Wang ◽  
Ying Peng ◽  
Xueyuan Zhang ◽  
...  

C118P, a phosphate prodrug of C118, which is a novel microtubule protein inhibitor, is currently under Phase I clinical development in China for treating ovarian cancer and lung cancer. The preclinical pharmacokinetics of prodrug C118P and its metabolite C118 were extensively characterized in vivo in mice, rats, and dogs and in vitro to support the further development of C118P. The preclinical tissue distribution and excretion were investigated in rats. Plasma protein binding in mice, rat, and human, and hepatic microsomal metabolic stability in mice, rat, dog, monkey, and human, were also evaluated. The (AUC0-inf) and C30s of C118P at 50 mg/kg in rats and 6 mg/kg in dogs, and the C2min of C118 at 6 mg/kg in dogs increased less than the dosage increase, suggested nonlinear pharmacokinetic occurred at high dose. As a prodrug, C118P can be quickly hydrolyzed into C118 after an intravenous administration. The unbound C118 in plasma is slightly higher than C118P. C118P can hardly penetrate the tissue, while C118 can distribute widely into tissues. In tumor-bearing nude mice, the concentration of C118 is high in lung, ovary, and tumor, with an extended half-life in tumor. C118P is a promising candidate prodrug for further clinical development.


Author(s):  
Sha Sumei ◽  
Kong Xiangyun ◽  
Chen Fenrong ◽  
Sun Xueguang ◽  
Hu Sijun ◽  
...  

Background/AimsThe role of DHRS3 in human cancer remains unclear. Our study explored the role of DHRS3 in gastric cancer (GC) and its clinicopathological significance and associated mechanisms.MaterialsBisulfite-assisted genomic sequencing PCR and a Mass-Array system were used to evaluate and quantify the methylation levels of the promoter. The expression levels and biological function of DHRS3 was examined by both in vitro and in vivo assays. A two-way hierarchical cluster analysis was used to classify the methylation profiles, and the correlation between the methylation status of the DHRS3 promoter and the clinicopathological characteristics of GC were then assessed.ResultsThe DHRS3 promoter was hypermethylated in GC samples, while the mRNA and protein levels of DHRS3 were significantly downregulated. Ectopic expression of DHRS3 in GC cells inhibited cell proliferation and migration in vitro, decreased tumor growth in vivo. DHRS3 methylation was correlated with histological type and poor differentiation of tumors. GC patients with high degrees of CpG 9.10 methylation had shorter survival times than those with lower methylation.ConclusionDHRS3 was hypermethylated and downregulated in GC patients. Reduced expression of DHRS3 is implicated in gastric carcinogenesis, which suggests DHRS3 is a tumor suppressor.


Author(s):  
Xiong Shu ◽  
Pan-Pan Zhan ◽  
Li-Xin Sun ◽  
Long Yu ◽  
Jun Liu ◽  
...  

BackgroundFocusing on antiangiogenesis may provide promising choices for treatment of gastric cancer (GC). This study aimed to investigate the mechanistic role of BCAT1 in the pathogenesis of GC, particularly in angiogenesis.MethodsBioinformatics and clinical samples analysis were used to investigate the expression and potential mechanism of BCAT1 in GC. BGC823 cells with BCAT1 overexpression or silencing were induced by lentiviral transduction. Cell phenotypes and angiogenesis were evaluated. The relevant proteins were quantized by Western blotting, immunohistochemistry, or immunofluorescence. Xenograft models were constructed to confirm the role of BCAT1 in vivo.ResultsBCAT1 was overexpressed in GC patients and associated with lower survival. BCAT1 expression was correlated with proliferation-, invasion-, or angiogenesis-related markers expression and pathways. Silencing BCAT1 expression suppressed cell viability, colony formation, cycle progression, invasion, and angiogenesis of BGC823 cells, as well as the tumor growth of xenograft models, whereas overexpressing BCAT1 had the opposite results both in vitro and in vivo. Bioinformatics analysis and Western blotting demonstrated that BCAT1 activated the PI3K/AKT/mTOR pathway. The addition of LY294002 reversed the tumor growth induced by BCAT1 overexpression, further verifying this mechanism.ConclusionBCAT1 might act as an oncogene by facilitating proliferation, invasion, and angiogenesis through activation of the PI3K/AKT/mTOR pathway. This finding could aid the optimization of antiangiogenesis strategies.


Epigenomics ◽  
2021 ◽  
Author(s):  
Leiyi Zhang ◽  
Ke Pan ◽  
Zhongkun Zuo ◽  
Fei Ye ◽  
Ding Cao ◽  
...  

Aim: Our study aimed at investigating how LINC01133 functions in gastric cancer (GC) progression. Materials & methods: Gain-of-function and loss-of-function approaches were applied to analyze the effects of LINC01133, microRNA-576-5p (miR-576-5p) and somatostatin (SST) on the biological behaviors of GC cells and in tumor-bearing nude mice. Results: GC tissues and cells showed low expression of LINC01133, and LINC01133 overexpression decreased malignant phenotypes of GC cells. Moreover, LINC01133 upregulated SST through binding to miR-576-5p. Overexpressing miR-576-5p or suppressing SST reversed the functions of LINC01133 in biological potentials of GC cells and tumor growth. Conclusion: LINC01133 overexpression may inhibit GC development by downregulation of miR-576-5p and upregulation of SST, which suggests new therapeutic targets for GC.


2020 ◽  
Vol 318 (1) ◽  
pp. G10-G22
Author(s):  
Jun Zou ◽  
Kun Wu ◽  
Chao Lin ◽  
Zhi-Gang Jie

Gastric cancer (GC) is one of the most common cancers in the world and remains a heavy burden of health worldwide. Adenylate cyclase 3 ( ADCY3) is a widely expressed membrane-associated protein in human tissues and has been identified to be a new molecular target of GC. Long noncoding RNAs have a substantial influence on tumorigenesis and progression of tumors by binding to microRNAs. Therefore, this study is to clarify the mechanism by which LINC00319 sponges micro RNA-335–5p ( miR-335–5p) to influence the development of GC. Initially, microarray analysis identified GC-related differentially expressed LINC00319 and ADCY3 for this study. The interaction was confirmed that LINC00319 interacted with miR-335–5p to regulate ADCY3. Next, SGC-7901 cells presenting with the lowest LINC00319 expression and the highest miR-335–5p expression were transfected with LINC00319, miR-335–5p inhibitor, or ADCY3 vector to examine their roles in growth and metastasis of GC cells, which was further ascertained by in vivo experiments. LINC00319 was upregulated and miR-335–5p was downregulated in GC cells. LINC00319 overexpression, miR-335–5p inhibitor, or ADCY3 overexpression was shown to significantly elevate the expression of cyclin-dependent kinase 4 and metastasis associated 1, decrease that of growth arrest-specific 1, and promote tumor growth and metastasis by increasing proliferation and migration and reducing cell apoptosis. Importantly, it was found that overexpressed miR-335–5p exerted its tumor suppressive role in GC through downregulating ADCY3. Collectively, LINC00319 expedited growth and metastasis of GC by upregulating miR-335–5p-mediated ADCY3. NEW & NOTEWORTHY This study is carried out based on in vivo and in vitro studies in mice and gastric cancer (GC) cells with the aim of clarifying the role of LINC00319 on GC growth and metastasis, which associated with micro RNA-335–5p-mediated adenylate cyclase 3. Altogether, we identified LINC00319 to be a potential therapy to treat GC.


Endocrinology ◽  
2005 ◽  
Vol 146 (7) ◽  
pp. 2885-2894 ◽  
Author(s):  
S. A. Rabbani ◽  
P. Khalili ◽  
A. Arakelian ◽  
H. Pizzi ◽  
G. Chen ◽  
...  

Abstract We evaluated the capacity of estradiol (E2) to regulate PTHrP production, cell growth, tumor growth, and metastasis to the skeleton in breast cancer. In estrogen receptor (ER)-negative human breast cancer cells, MDA-MB-231, and cells transfected with full-length cDNA encoding ER (S-30), E2 caused a marked decrease in cell growth and PTHrP production, effects that were abrogated by anti-E2 tamoxifen. E2 also inhibited PTHrP promoter activity in S-30 cells. For in vivo studies, MDA-MB-231 and S-30 cells were inoculated into the mammary fat pad of female BALB/c nu.nu mice. Animals receiving S-30 cells developed tumors of significantly smaller volume compared with MDA-MB-231 tumor-bearing animals. This change in tumor volume was reversed when S-30 cells were inoculated into ovariectomized (OVX) hosts. Inoculation of MDA-MB-231 cells into the left ventricle resulted in the development of lesions in femora and tibia as determined by x-ray analysis. In contrast, these lesions were significantly smaller in volume and number in animals inoculated with S-30, and this lower incidence was reversed in OVX animals. Bone histological analysis showed that the tumor volume to tissue volume ratio was comparable with that seen by x-ray. Immunohistochemical analysis showed that PTHrP production was inhibited in S-30 group and restored to levels comparable to that seen in MDA-MB-231 tumor-bearing animals when S-30 cells were inoculated in OVX animals. Collectively these studies show that E2 production is inversely correlated with PTHrP production and that the growth-promoting effect of PTHrP has a direct impact on tumor growth at both nonskeletal and skeletal sites.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 855-855
Author(s):  
Leonid Dubrovsky ◽  
Elliott Brea ◽  
Dmitry Pankov ◽  
Nicholas Veomett ◽  
Tao Dao ◽  
...  

Abstract Acute and chronic leukemias, including CD34+ CML stem cells, overexpress the Wilms tumor gene 1 (WT1) protein, making WT1 an attractive therapeutic target. ESKM is a fully human IgG1 antibody that targets a 9 amino acid sequence (RMF) of the protein WT1 in the context of HLA-A0201, allowing it to target an undruggable, widely expressed, intracellular oncogene product. BV173 is an HLA-A0201+, human Ph+ ALL cell line that expresses WT1, and tagged by our lab with luciferase. We engineered a tyrosine kinase inhibitor (TKI) resistant BV173-R cell line by transducing BV173 with the resistant T315I Bcr-Abl plasmid. Antibody-dependent cellular cytotoxicity (ADCC) was evaluated in vitro by chromium release assay, utilizing human PBMC effectors. Tumor growth in vivo was assessed in NOD/SCID gamma (NSG) mice with bioluminescence imaging (BLI). RT-PCR was used to evaluate minimal residual disease in mice with negative BLI signal at the end of therapy. Imatinib, dasatinib, and ponatinib were used at up to maximally tolerated doses, given IP once daily. ESKM was administered at 100 µg twice weekly IP. ESKM mediated ADCC against both BV173 and BV173-R cell lines in vitro. In a BV173 engrafted human leukemia xenograft model, ESKM was more potent than imatinib, with median tumor growth reduction of 78% vs 52%. Combination of imatinib and ESKM therapy resulted in a 94% reduction in leukemic growth. High dose dasatinib (40 mg/kg daily) was more potent than ESKM, but discontinuation of therapy due to dasatinib toxicity resulted in relapse. Combination with ESKM therapy with dasatinib resulted in cure in 75% of mice, confirmed by bone marrow RT-PCR three weeks after termination of therapy. For mice cytoreduced with dasatinib followed by consolidation therapy with ESKM, delayed relapse was observed, but no cures. ESKM was highly superior to imatinib and dasatinib against the T315I BV173-R leukemia in vivo. Cures were not achieved with combination therapy of ESKM and either first or second generation TKIs against resistant T315I leukemia. Ponatinib at 10 mg/kg had higher efficacy than ESKM alone against BV173-R, but mice treated with combination of ESKM and ponatinib had superior tumor reduction. CONCLUSION: ESKM is an effective therapeutic antibody for sensitive and T315I Ph+ ALL. Resistant T315I Ph+ leukemic growth is inhibited more effectively by ESKM therapy compared to imatinib and dasatinib, and combination therapy with ESKM is superior to ponatinib. Supported by the Leukemia and Lymphoma Society, NIH R01CA55349, P01 23766 and T32CA62948-18. Disclosures: Yan: Eureka Therapeutics: Employment. Liu:Eureka Therapeutics: Employment, Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document