Dysregulation of X-Ray Repair Cross Complementing 4 Expression in the Eutopic Endometrium of Women with Endometriosis

Reproduction ◽  
2022 ◽  
Author(s):  
Kashmira Bane ◽  
Junita Desouza ◽  
Asma Rojewale ◽  
Rajendra Katkam ◽  
Gwendolyn Fernandes ◽  
...  

Recent data suggest that the DNA damage response (DDR) is altered in the eutopic endometrium (EE) of women with endometriosis and this probably ensues in response to higher DNA damage encountered by the EE in endometriosis. DDR operates in a tissue-specific manner and involves different pathways depending on the type of DNA lesions. Among these pathways, the non-homologous end joining (NHEJ) pathway plays a critical role in the repair of double-stranded DNA breaks. The present study was undertaken to explore whether NHEJ is affected in the EE of women with endometriosis. Towards this, we focused on the X-Ray Repair Cross-Complementing 4 (XRCC4) protein, one of the core components of the NHEJ pathway. Endometrial XRCC4 protein levels in the mid-proliferative phase were found significantly (p<0.05) downregulated in women with endometriosis, compared to control women. Investigation of a microarray-based largest dataset in the GEO database (GSE51981) revealed a similar trend at the transcript level in the EE of women with endometriosis, compared to control women. Further in-vitro studies were undertaken to explore the effects of H2O2-induced oxidative stress on DNA damage, as assessed by γ-H2AFX and 8-hydroxy-2’-deoxyguanosine (8-OHdG) immunolocalization, and XRCC4 protein levels in endometrial stromal (ThESCs) and epithelial (Ishikawa) cells. A significant decrease in XRCC4 protein levels and significantly higher localization of γ-H2AFX and 8-OHdG were evident in ThESCs and Ishikawa cells experiencing oxidative stress. Overall, the study demonstrates that the endometrial XRCC4 expression is dysregulated in women with endometriosis and this could be due to higher oxidative stress in endometriosis.

2005 ◽  
Vol 25 (17) ◽  
pp. 7625-7636 ◽  
Author(s):  
Tina Thorslund ◽  
Cayetano von Kobbe ◽  
Jeanine A. Harrigan ◽  
Fred E. Indig ◽  
Mette Christiansen ◽  
...  

ABSTRACT Cockayne syndrome (CS) is a rare genetic disorder characterized as a segmental premature-aging syndrome. The CS group B (CSB) protein has previously been implicated in transcription-coupled repair, transcriptional elongation, and restoration of RNA synthesis after DNA damage. Recently, evidence for a role of CSB in base excision repair of oxidative DNA lesions has accumulated. In our search to understand the molecular function of CSB in this process, we identify a physical and functional interaction between CSB and poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 is a nuclear enzyme that protects the integrity of the genome by responding to oxidative DNA damage and facilitating DNA repair. PARP-1 binds to single-strand DNA breaks which activate the catalytic ability of PARP-1 to add polymers of ADP-ribose to various proteins. We find that CSB is present at sites of activated PARP-1 after oxidative stress, identify CSB as a new substrate of PARP-1, and demonstrate that poly(ADP-ribosyl)ation of CSB inhibits its DNA-dependent ATPase activity. Furthermore, we find that CSB-deficient cell lines are hypersensitive to inhibition of PARP. Our results implicate CSB in the PARP-1 poly(ADP-ribosyl)ation response after oxidative stress and thus suggest a novel role of CSB in the cellular response to oxidative damage.


2014 ◽  
Vol 306 (3) ◽  
pp. C221-C229 ◽  
Author(s):  
Moises Torres-Gonzalez ◽  
Thomas Gawlowski ◽  
Heidi Kocalis ◽  
Brian T. Scott ◽  
Wolfgang H. Dillmann

The mitochondrial DNA base modification 8-hydroxy 2′-deoxyguanine (8-OHdG) is one of the most common DNA lesions induced by reactive oxygen species (ROS) and is considered an index of DNA damage. High levels of mitochondrial 8-OHdG have been correlated with increased mutation, deletion, and loss of mitochondrial (mt) DNA, as well as apoptosis. 8-Oxoguanosine DNA glycosylase-1 (OGG1) recognizes and removes 8-OHdG to prevent further DNA damage. We evaluated the effects of OGG1 on mtDNA damage, mitochondrial function, and apoptotic events induced by oxidative stress using H9C2 cardiac cells treated with menadione and transduced with either Adv-Ogg1 or Adv-Control (empty vector). The levels of mtDNA 8-OHdG and the presence of apurinic/apyrimidinic (AP) sites were decreased by 30% and 35%, respectively, in Adv-Ogg1 transduced cells ( P < 0.0001 and P < 0.005, respectively). In addition, the expression of base excision repair (BER) pathway members APE1 and DNA polymerase γ was upregulated by Adv-Ogg1 transduction. Cells overexpressing Ogg1 had increased membrane potential ( P < 0.05) and decreased mitochondrial fragmentation ( P < 0.005). The mtDNA content was found to be higher in cells with increased OGG1 ( P < 0.005). The protein levels of fission and apoptotic factors such as DRP1, FIS1, cytoplasmic cytochrome c, activated caspase-3, and activated caspase-9 were lower in Adv-Ogg1 transduced cells. These observations suggest that Ogg1 overexpression may be an important mechanism to protect cardiac cells against oxidative stress damage.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1284
Author(s):  
Anzhela V. Pavlova ◽  
Elena A. Kubareva ◽  
Mayya V. Monakhova ◽  
Maria I. Zvereva ◽  
Nina G. Dolinnaya

DNA G-quadruplexes (G4s) are known to be an integral part of the complex regulatory systems in both normal and pathological cells. At the same time, the ability of G4s to impede DNA replication plays a critical role in genome integrity. This review summarizes the results of recent studies of G4-mediated genomic and epigenomic instability, together with associated DNA damage and repair processes. Although the underlying mechanisms remain to be elucidated, it is known that, among the proteins that recognize G4 structures, many are linked to DNA repair. We analyzed the possible role of G4s in promoting double-strand DNA breaks, one of the most deleterious DNA lesions, and their repair via error-prone mechanisms. The patterns of G4 damage, with a focus on the introduction of oxidative guanine lesions, as well as their removal from G4 structures by canonical repair pathways, were also discussed together with the effects of G4s on the repair machinery. According to recent findings, there must be a delicate balance between G4-induced genome instability and G4-promoted repair processes. A broad overview of the factors that modulate the stability of G4 structures in vitro and in vivo is also provided here.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Prasun Chakraborty ◽  
Kevin Hiom

AbstractDouble stranded DNA Breaks (DSB) that occur in highly transcribed regions of the genome are preferentially repaired by homologous recombination repair (HR). However, the mechanisms that link transcription with HR are unknown. Here we identify a critical role for DHX9, a RNA helicase involved in the processing of pre-mRNA during transcription, in the initiation of HR. Cells that are deficient in DHX9 are impaired in the recruitment of RPA and RAD51 to sites of DNA damage and fail to repair DSB by HR. Consequently, these cells are hypersensitive to treatment with agents such as camptothecin and Olaparib that block transcription and generate DSB that specifically require HR for their repair. We show that DHX9 plays a critical role in HR by promoting the recruitment of BRCA1 to RNA as part of the RNA Polymerase II transcription complex, where it facilitates the resection of DSB. Moreover, defects in DHX9 also lead to impaired ATR-mediated damage signalling and an inability to restart DNA replication at camptothecin-induced DSB. Together, our data reveal a previously unknown role for DHX9 in the DNA Damage Response that provides a critical link between RNA, RNA Pol II and the repair of DNA damage by homologous recombination.


Antioxidants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 586
Author(s):  
Anna Zimnol ◽  
Nora Spicker ◽  
Ronja Balhorn ◽  
Katrin Schröder ◽  
Nicole Schupp

In higher concentrations, the blood pressure regulating hormone angiotensin II leads to vasoconstriction, hypertension, and oxidative stress by activating NADPH oxidases which are a major enzymatic source of reactive oxygen species (ROS). With the help of knockout animals, the impact of the three predominant NADPH oxidases present in the kidney, i.e., Nox1, Nox2 and Nox4 on angiotensin II-induced oxidative damage was studied. Male wildtype (WT) C57BL/6 mice, Nox1-, Nox2- and Nox4-deficient mice were equipped with osmotic minipumps, delivering either vehicle (PBS) or angiotensin II, for 28 days. Angiotensin II increased blood pressure and urinary albumin levels significantly in all treated mouse strains. In Nox1 knockout mice these increases were significantly lower than in WT, or Nox2 knockout mice. In WT mice, angiotensin II also raised systemic oxidative stress, ROS formation and DNA lesions in the kidney. A local significantly increased ROS production was also found in Nox2 and Nox4 knockout mice but not in Nox1 knockout mice who further had significantly lower systemic oxidative stress and DNA damage than WT animals. Nox2 and Nox4 knockout mice had increased basal DNA damage, concealing possible angiotensin II-induced increases. In conclusion, in the kidney, Nox1 seemed to play a role in angiotensin II-induced DNA damage.


2016 ◽  
Vol 114 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Bret D. Wallace ◽  
Zachary Berman ◽  
Geoffrey A. Mueller ◽  
Yunfeng Lin ◽  
Timothy Chang ◽  
...  

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3′-5′ nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3′-5′ exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


2020 ◽  
Author(s):  
Nealia C.M. House ◽  
Jacob V. Layer ◽  
Brendan D. Price

AbstractDNA repair requires reorganization of the local chromatin structure to facilitate access to and repair of the DNA. Studying DNA double-strand break (DSB) repair in specific chromatin domains has been aided by the use of sequence-specific endonucleases to generate targeted breaks. Here, we describe a new approach that combines KillerRed, a photosensitizer that generates reactive oxygen species (ROS) when exposed to light, and the genome-targeting properties of the CRISPR/Cas9 system. Fusing KillerRed to catalytically inactive Cas9 (dCas9) generates dCas9-KR, which can then be targeted to any desired genomic region with an appropriate guide RNA. Activation of dCas9-KR with green light generates a local increase in reactive oxygen species, resulting in “clustered” oxidative damage, including both DNA breaks and base damage. Activation of dCas9-KR rapidly (within minutes) increases both γH2AX and recruitment of the KU70/80 complex. Importantly, this damage is repaired within 10 minutes of termination of light exposure, indicating that the DNA damage generated by dCas9-KR is both rapid and transient. Further, repair is carried out exclusively through NHEJ, with no detectable contribution from HR-based mechanisms. Surprisingly, sequencing of repaired DNA damage regions did not reveal any increase in either mutations or INDELs in the targeted region, implying that NHEJ has high fidelity under the conditions of low level, limited damage. The dCas9-KR approach for creating targeted damage has significant advantages over the use of endonucleases, since the duration and intensity of DNA damage can be controlled in “real time” by controlling light exposure. In addition, unlike endonucleases that carry out multiple cut-repair cycles, dCas9-KR produces a single burst of damage, more closely resembling the type of damage experienced during acute exposure to reactive oxygen species or environmental toxins. dCas9-KR is a promising system to induce DNA damage and measure site-specific repair kinetics at clustered DNA lesions.


2021 ◽  
Author(s):  
Stavroula Tsaridou ◽  
Georgia Velimezi ◽  
Frances Willenbrock ◽  
Maria Chatzifrangkeskou ◽  
Andreas Panagopoulos ◽  
...  

DNA lesions occur across the genome and constitute a threat to cell viability; however, damage at specific genomic loci has a disproportionally greater impact on the overall genome stability. The ribosomal RNA gene repeats (rDNA) are emerging fragile sites due to repetitive nature, clustering and high transcriptional activity. Recent progress in understanding how the rDNA damage response is organized has highlighted the key role of adaptor proteins in the response. Here we identify that the scaffold and tumor suppressor, RASSF1A is recruited at sites of damage and enriched at rDNA breaks. Employing targeted nucleolar DNA damage, we find that RASSF1A recruitment requires ATM activity and depends on 53BP1. At sites of damage RASSF1A facilitates local ATM signal establishment and rDNA break repair. RASSF1A silencing, a common epigenetic event during malignant transformation, results in persistent breaks, rDNA copy number alterations and decreased cell viability. Meta-analysis of a lung adenocarcinoma cohort showed that RASSF1A epigenetic silencing leads in rDNA copy number discrepancies. Overall, we present evidence that RASSF1A acts as a DNA repair factor and offer mechanistic insight in how the nucleolar DNA damage response is organized.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Jia-Qing Zhang ◽  
Xian-Wei Wang ◽  
Jun-Feng Chen ◽  
Qiao-Ling Ren ◽  
Jing Wang ◽  
...  

Oxidative stress is a causal factor and key promoter of all kinds of reproductive disorders related to granulosa cell (GC) apoptosis that acts by dysregulating the expression of related genes. Various studies have suggested that grape seed procyanidin B2 (GSPB2) may protect GCs from oxidative injury, though the underlying mechanisms are not fully understood. Therefore, whether the beneficial effects of GSPB2 are associated with microRNAs, which have been suggested to play a critical role in GC apoptosis by regulating the expression of protein-coding genes, was investigated in this study. The results showed that GSPB2 treatment protected GCs from a H2O2-induced apoptosis, as detected by an MTT assay and TUNEL staining, and increased let-7a expression in GCs. Furthermore, let-7a overexpression markedly increased cell viability and inhibited H2O2-induced GC apoptosis. Furthermore, the overexpression of let-7a reduced the upregulation of Fas expression in H2O2-treated GCs at the mRNA and protein levels. Dual-luciferase reporter assay results indicated that let-7a directly targets the Fas 3′-UTR. Furthermore, the overexpression of let-7a enhanced the protective effects of GSPB2 against GC apoptosis induced by H2O2. These results indicate that GSPB2 inhibits H2O2-induced apoptosis of GCs, possibly through the upregulation of let-7a.


Oncogene ◽  
2019 ◽  
Vol 39 (4) ◽  
pp. 754-766 ◽  
Author(s):  
Sara Nicolai ◽  
Robert Mahen ◽  
Giuseppe Raschellà ◽  
Alberto Marini ◽  
Marco Pieraccioli ◽  
...  

Abstract Efficient repair of DNA double-strand breaks (DSBs) is of critical importance for cell survival. Although non-homologous end joining (NHEJ) is the most used DSBs repair pathway in the cells, how NHEJ factors are sequentially recruited to damaged chromatin remains unclear. Here, we identify a novel role for the zinc-finger protein ZNF281 in participating in the ordered recruitment of the NHEJ repair factor XRCC4 at damage sites. ZNF281 is recruited to DNA lesions within seconds after DNA damage through a mechanism dependent on its DNA binding domain and, at least in part, on poly-ADP ribose polymerase (PARP) activity. ZNF281 binds XRCC4 through its zinc-finger domain and facilitates its recruitment to damaged sites. Consequently, depletion of ZNF281 impairs the efficiency of the NHEJ repair pathway and decreases cell viability upon DNA damage. Survival analyses from datasets of commonly occurring human cancers show that higher levels of ZNF281 correlate with poor prognosis of patients treated with DNA-damaging therapies. Thus, our results define a late ZNF281-dependent regulatory step of NHEJ complex assembly at DNA lesions and suggest additional possibilities for cancer patients’ stratification and for the development of personalised therapeutic strategies.


Sign in / Sign up

Export Citation Format

Share Document