scholarly journals Investigation of chemical constituents of Artemisia albicerata

Author(s):  
Alzhan Amantay ◽  
Aidana Kudaibergen ◽  
Moldyr Dyusebaeva ◽  
Yun Feng ◽  
Yun Jenis

Artemisia albicerata is of great interest and occupy an important place among the vast variety of medicinal plants in Kazakhstan due to its endemicity, medical and pharmacological properties, and has a rich chemical composition consisting of amino acids, fatty acids, macro-micro elements, flavonoids and other low-molecular substances. In the present study, Artemisia albicerata, collected in Almaty region of Kazakhstan has been explored with the purpose of quantitative and qualitative analysis. As a result, twenty amino and eight fatty acids were identified by gas-liquid chromatography. The major amino acid contents were glutamate (2615 mg/100 g), aspartate (1296 mg/100 g) and alanine (890 mg/100 g), while the composition of fatty acids mainly was oleic (19.6%) and linoleic (68.4%) acids. Furthermore, eleven macro-micro elements were determined in the ash of a plant by the method of multi-element atomic emission spectral analysis, main of them were Ca (60.0 mg/g), K (60.4 mg/g), Mg (12.2 mg/g), Na (5.57 mg/g), Fe (3.57 mg/g). Also it should be highlighted that total bioactive components such as organic acids, flavonoids, tannins, coumarins, alkaloids, saponins, polysaccharides together with the moisture content (6.62%), total ash (7.96%) and extractives (12.7%) have been determined.

2004 ◽  
Vol 69 (8-9) ◽  
pp. 635-640 ◽  
Author(s):  
Devendra Patel ◽  
Ranjan Kumar ◽  
Satgur Prasad

The two varieties of soybean (Soybean Bragg and Soybean JS-71-05) were collected from an industrial site (IS) and from a non-industrial site (NIS) for the study of their chemical composition and fatty acids profiles by gas liquid chromatography (GLC). These studies revealed large changes in the major and minor fatty acids of the soybean seeds due to the effect of chemical pollutants. There was a significant decrease in the amounts of major and minor fatty acids, such as myristic acid (14:0), palmitic acid (16:0) stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2), and linolenic acid (18:3), in the seeds from industrial site. The changes in the chemical composition due to chemical pollutants showed mixed results.


2020 ◽  
Vol 36 (6) ◽  
pp. 35-48
Author(s):  
D.V. Коchkin ◽  
G.I. Sobolkovа ◽  
А.А. Fоmеnkov ◽  
R.А. Sidorov ◽  
А.М. Nоsоv

The physiological characteristics of the callus cell cultures of Alhagi persarum Boiss et Buhse, a member of the legume family, widely used in folk medicine, have been studied. It was shown that the source of the explant was an important factor in the initiation of callusogenesis: more intense callusogenesis (almost 100%) was observed for explants from various organs of sterile seedlings, rather than intact plants (less than 30%). As a result, more than 20 lines of morphologically different callus cell cultures were obtained, and the growth parameters for the 5 most intensively growing lines were determined. The composition of fatty acids (FA) of total lipids and secondary metabolites in the most physiologically stable callus line Aр-207 was analyzed. Using capillary gas-liquid chromatography with mass spectrometric detection (GLC-MS), 19 individual C12--C24 FAs were identified, the main fraction of which were palmitic (~ 23%), stearic (~ 22%), linoleic (~ 14%) and α-linolenic (~ 33%) acids. The established atypical ratio of FAs (a simultaneous high content of both saturated FAs and polyunsaturated α-linolenic acid) is possibly due to the adaptation of cells to in vitro growth conditions. Phytochemical analysis of the secondary metabolites was carried out using ultra-performance liquid chromatography with electrospray ionization mass spectrometric detection (UPLC MS). Compounds belonging to different structural groups of isoflavones were found. Aglycones (calycosin, formononetin and afrormosin isomer), glucosides (formononetin glucoside), as well as esters of glucosides (malonylglycosides of calicosin, formononetin, afrormosin isomers, glycitein and genistein) were detected. These secondary metabolites are widespread in plants of the Fabaceae family; however, isoflavones are rare in representatives of the Alhagi genus. The presence of malonylated isoflavone glycosides in Alhagi spp. was shown for the first time. endemic plant species, Alhagi, in vitro cell culture, callus cell culture, isoflavones, fatty acids All studies were carried out using the equipment of the "Experimental Biotechnological Facility" and the "All-Russian Collection of Cell Cultures of Higher Plants" of IРР RAS. This work was supported by the Russian Foundation for Basic Research (RFBR), contract no.18-54-06021 (Az_a), and the Government of the Russian Federation, Megagrant Project no. 075-15-2019-1882.


Metabolites ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 121
Author(s):  
Julie A. Schmidt ◽  
Georgina K. Fensom ◽  
Sabina Rinaldi ◽  
Augustin Scalbert ◽  
Marc J. Gunter ◽  
...  

Metabolomics may help to elucidate mechanisms underlying diet-disease relationships and identify novel risk factors for disease. To inform the design and interpretation of such research, evidence on diet-metabolite associations and cross-assay comparisons is needed. We aimed to compare nuclear magnetic resonance (NMR) metabolite profiles between meat-eaters, fish-eaters, vegetarians and vegans, and to compare NMR measurements to those from mass spectrometry (MS), clinical chemistry and capillary gas-liquid chromatography (GC). We quantified 207 serum NMR metabolite measures in 286 male participants of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Oxford cohort. Using univariate and multivariate analyses, we found that metabolite profiles varied by diet group, especially for vegans; the main differences compared to meat-eaters were lower levels of docosahexaenoic acid, total n-3 and saturated fatty acids, cholesterol and triglycerides in very-low-density lipoproteins, various lipid factions in high-density lipoprotein, sphingomyelins, tyrosine and creatinine, and higher levels of linoleic acid, total n-6, polyunsaturated fatty acids and alanine. Levels in fish-eaters and vegetarians differed by metabolite measure. Concentrations of 13 metabolites measured using both NMR and MS, clinical chemistry or GC were mostly similar. In summary, vegans’ metabolite profiles were markedly different to those of men consuming animal products. The studied metabolomics platforms are complementary, with limited overlap between metabolite classes.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 177-177
Author(s):  
Gabriela E Martinez Padilla ◽  
Rajesh Jha ◽  
Vivek Fellner ◽  
Eric van Heugten

Abstract This study evaluated short-chain fatty acid (SCFA) production from purified fiber sources when fermented in vitro using pig cecal contents as an inoculum. Fiber sources of interest were inulin from chicory root (native and long-chain inulin with 90 and 98% fiber, respectively), pectin from citrus peel (high methoxyl pectin), resistant starch (native starch), potato starch (commercial grade), and β-glucan (β-1,3;β-1,6 yeast-derived). Cellulose and cornstarch were used as indigestible and highly digestible carbohydrates, respectively. Triplicate samples of substrates (2 g) were subjected to enzymatic hydrolysis with pepsin and pancreatin for 6 h. Subsequently, hydrolyzed residues (200 mg) were incubated under anaerobic conditions at 39°C with 30 mL solution of cecal inoculum collected from 3 sows fed a standard commercial diet and buffered mineral solution. After 48 h of incubation, solutions from fermented samples were analyzed for pH, SCFA, and branched-chain fatty acids (BCFA) using gas-liquid chromatography. Enzymatic hydrolysis had no effect on digestion of β-glucan, but total SCFA concentration after fermentation was highest (26.13 mmol/g) followed by resistant starch (22.61 mmol/g) and potato starch (22.20 mmol/g) and was lowest for cellulose (13.91 mmol/g). In contrast, native inulin was highly digested during enzymatic hydrolysis, resulting in the lowest substrate available for fermentation (11.84% DM) and the highest pH (5.98). Enzymatic hydrolysis and fermentation of resistant starch increased (P< 0.001) concentrations of acetate (0.60 mg/g), whereas potato starch and β-glucan yielded more butyrate (0.60 and 0.54 mg/g respectively), and β-glucan resulted in greater (P< 0.001) propionate concentrations (0.69 mg/g). Pectin resulted in the highest fermentation (82.38% DM disappearance) and the lowest pH (4.03) compared to the other fiber sources (P< 0.001) and yielded the lowest BCFA concentration (1.89 mM, P< 0.001). Results suggest that fermentation of resistant starch, potato starch, and β-glucan produced higher SCFA concentrations, while pectin resulted in a decreased pH of fermentation solution.


Sign in / Sign up

Export Citation Format

Share Document