scholarly journals Rapid formation methods of arrays of randomly distributed Au and Ag nanoparticles, their morphologies and optical characteristics

2021 ◽  
Vol 22 (4) ◽  
pp. 804-810
Author(s):  
V.M. Rubish ◽  
V.K. Kyrylenko ◽  
M.O. Durkot ◽  
L.I. Makar ◽  
M.M. Pop ◽  
...  

By the method of rapid radiation heating (at a speed of 20-25 K/s) of Au and Ag films with a thickness of 4-35 nm to temperatures of 573-693 K in air and in the process of vacuum deposition of silver on heated (up to 700 K at a heating rate of 10 K/s ) glass substrates formed Au and Ag NPs arrays with nanoparticle sizes from several tens to hundreds of nanometers, the position λSPR of which is in the range of 520-597 nm for Au NPs and 424-509 nm for Ag NPs. It is established that the average size of nanoparticles depends on the thickness of gold and silver films and the annealing temperature. The results testify that glass substrates with arrays of randomly distributed gold NPs can be used as effective SERS-substrates for the investigation of Raman spectra of nanosized (50-100 nm) chalcogenide films.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
V. A. Chumachenko ◽  
A. P. Naumenko ◽  
O. A. Yeshchenko ◽  
N. V. Kutsevol ◽  
I. S. Bondarchuk

Metal/semiconductor (Au/CdS) nanocomposites were synthesized in the solution of branched D-g-PAA polymer. TEM and DLS of Au/CdS/D-g-PAA nanocomposites revealed complicated nanocomposite structure consisting of the Au nanoparticles (NPs) of 6 nm in size surrounded by small CdS NPs with size of 3 nm. These nanocomposites formed the aggregates-clusters with average size of 50–800 nm. Absorption spectra of Au/CdS nanocomposites consist of the bands of excitons in CdS NPs and surface plasmons in Au ones. The surface plasmon band of gold NPs is red shifted and broadened in Au/CdS/D-g-PAA nanocomposites comparing to the one of Au NPs in Au/D-g-PAA proving the fact of close location of CdS and Au NPs in the synthesized Au/CdS/D-g-PAA nanocomposites. The PL spectra of Au/CdS nanocomposites originate from the radiative transitions in excitons in CdS NPs. The 4-fold increase of intensity of free exciton PL is observed for CdS NPs in Au/CdS/D-g-PAA comparing to CdS ones in CdS/D-g-PAA that is due to PL enhancement by local field of surface plasmons of Au NPs. Also, the 12-fold decrease of intensity of localized exciton PL is observed for CdS NPs in Au/CdS/D-g-PAA comparing to CdS ones in CdS/D-g-PAA. Most probably, it is due to passivation of the surface of CdS NPs carried out by the Au ones.


Author(s):  
Nguyen The Binh ◽  
Nguyen Quang Dong

We studied to produce SERS substrates using gold (Au) nanoparticles (AuNPs) prepared by pulse laser ablation (PLA) in water. The colloidal Au NPs with average size of 23nm were deposited on a silicon wafer to form AuNPs/Si SERS substrate. Malachite green was chosen as a test analyte to examine the sensitivity of the SERS substrates. The SERS enhancement factor of the AuNPs/Si was found to be about 106.  The high sensitivity of the AuNPs/Si substrates was confirmed by the SERS spectra of malachite green detected with high quality at concentrations of 0.1ppm. The SERS substrates can detect SERS spectra of tetracycline at low concentrations of around 1ppm.


RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25546-25557 ◽  
Author(s):  
T. Abou Elmaaty ◽  
Kh. El-Nagare ◽  
S. Raouf ◽  
Kh. Abdelfattah ◽  
S. El-Kadi ◽  
...  

In this study, we present a successful simple method for printing and finishing of polyester and cotton fabrics using gold and silver nanoparticles (Au-NPs and Ag-NPs, respectively) as stable, fast colorants and functional components.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 234 ◽  
Author(s):  
Mottamchetty Venkatesh ◽  
Rashid A. Ganeev ◽  
Dmitry S. Ivanov ◽  
Ganjaboy S. Boltaev ◽  
Vyacheslav V. Kim ◽  
...  

Gold nanoparticles (NPs) have a wide range of applications in various fields. Here, we present high-order nonlinear optical studies of the plasmas produced from ablation of Au bulk targets and Au NP films deposited on paper and glass substrates. Experimentally, we analyze high-order harmonic generation (HHG) from gold NPs-containing plasmas. The HHG is produced by 35-fs pulses at 800 and 400 nm, while the plasmas are produced by femtosecond (35 fs, 800 nm), picosecond (200 ps, 800 nm), and nanosecond (5 ns, 1064 nm) pulses, respectively. High-order harmonics produced from ablated Au NPs on paper were 40 times stronger than the HHG from that ablated from the Au bulk targets. Through molecular dynamic simulations, we investigate the formation of gold NPs during laser ablation of a metal surface under different conditions.


2020 ◽  
pp. 1320-1327
Author(s):  
Alwan M. Alwan ◽  
Mohammed S. Mohammed ◽  
Russul M. Shehab

The influence of different types of plasmonic gold (Au-NPs) and silver (Ag-NPs) nanoparticles as well as aging on the performance of Surface-Enhanced Raman Scattering (SERS) sensors were studied. The average diameters of Au-NPs and Ag-NPs were about 23 nm and 15 nm, respectively, with a number of laser pulses of about 200. plasmonic nanoparticles were synthesized by laser ablation process in distilled water using a fixed energy laser fluence of about 14 J/cm2 of Nd-YAG laser, with 1060 nm wavelength and 1 Hz pulse repetition rate. The SERS sensor was carried out by quick drop casting process of plasmonicplasmonic nanoparticles on glass substrates. The morphological aspects and the performance of SERS sensors were investigated by high resolution transmission electron microscopy (HR-TEM) and Raman spectroscopy. All the results indicated the significant dependence of the performance of the sensor on the types of the plasmonic nanoparticles . The obtained Raman signal intensity of Ag-NPs was about 105a.u. compared with 103a.u. for Au-NPs. While, the stability of Au-NPs was much higher than that of Ag-NPs based on SERS sensors due to the normal oxidation process of Ag-NPs.


Nanoscale ◽  
2021 ◽  
Author(s):  
Lixiang Xing ◽  
Cui Wang ◽  
Yi Cao ◽  
Jihui Zhang ◽  
Haibing Xia

In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of...


2020 ◽  
Vol 5 (1) ◽  
pp. 761-767
Author(s):  
Reiyhaneh Abbasian ◽  
Hoda Jafarizadeh-Malmiri

AbstractGreen fabrication of metal nanoparticles (NPs), using natural reducing and stabilizing agents existed in plants and their derivatives, due to their unique properties, has gained more attention. The present study focuses on the synthesis of gold (Au), silver (Ag) and selenium (Se) NPs using coffee bean extract under hydrothermal conditions (1.5 atm and 121°C, for 15 min). Coffee bean extract obtained in 2 h processing using Clevenger apparatus and Fourier transform-infrared (FT-IR) spectroscopy indicated five highlighted peaks, namely, hydroxyl, amide, aromatic, alkane and ring groups. Dynamic light scattering analysis revealed that among three different NPs formed, fabricated Ag NPs had small particle size (153 nm) and high zeta potential value (16.8 mV). However, synthesized Au NPs had minimum polydispersity index (0.312). Results also indicated that fabricated Au, Se and Ag NPs had low antioxidant activity with values of 9.1, 8.9 and 8.7%, respectively. Morphological and antibacterial activity assessments, demonstrated that synthesized Ag, Au and Se NPs had spherical shape and high bactericidal activity against E. coli and S. aurous. Obtained results indicated that the synthesized NPs, can be utilized in various areas.


2013 ◽  
Vol 14 (1-2) ◽  
pp. 49-60 ◽  
Author(s):  
Francesca Broggi ◽  
Jessica Ponti ◽  
Guido Giudetti ◽  
Fabio Franchini ◽  
Vicki Stone ◽  
...  

AbstractSilver nanoparticles (Ag NPs) are one of the most common nanomaterials present in nanotechnology-based products. Here, the physical chemical properties of Ag NPs suspensions of 44 nm, 84 nm and 100 nm sizes synthesized in our laboratory were characterized. The NM-300 material (average size of 17 nm), supplied by the Joint Research Centre Nanomaterials Repository was also included in the present study. The Ag NPs potential cytotoxicity was tested on the Balb3T3 cell line by the Colony Forming Efficiency assay, while their potential morphological neoplastic transformation and genotoxicity were tested by the Cell Transformation Assay and the micronucleus test, respectively. After 24 h of exposure, NM-300 showed cytotoxicity with an IC50 of 8 µM (corresponding to 0.88 µg/mL) while for the other nanomaterials tested, values of IC50 were higher than 10 µM (1.10 µg/mL). After 72 h of exposure, Ag NPs showed size-dependent cytotoxic effect with IC50 values of 1.5 µM (1.16 µg/mL) for NM-300, 1.7 µM (1.19 µg/mL) for Ag 44 nm, 1.9 µM (0.21 µg/mL) for Ag 84 nm and 3.2 µM (0.35 µg/mL) for Ag 100 nm. None of the Ag NPs tested was able to induce either morphological neoplastic transformation or micronuclei formation.


2015 ◽  
Vol 29 (01) ◽  
pp. 1450254 ◽  
Author(s):  
M. Shayani Rad ◽  
A. Kompany ◽  
A. Khorsand Zak ◽  
M. E. Abrishami

Pure and silver added zinc oxide nanoparticles ( ZnO -NPs and ZnO : Ag -NPs) were synthesized through a modified sol–gel method. The prepared samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. In the XRD patterns, silver diffracted peaks were also observed for the samples synthesized at different calcination temperatures of 500°C, 700°C, 900°C except 1100°C, in addition to ZnO . TEM images indicated that the average size of ZnO : Ag -NPs increases with the amount of Ag concentration. The PL spectra of the samples revealed that the increase of Ag concentration results in the increase of the visible emission intensity, whereas by increasing the calcination temperature the intensity of visible emission of the samples decreases.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Faisal Ali ◽  
Muhammad Hamza ◽  
Munawar Iqbal ◽  
Beriham Basha ◽  
Norah Alwadai ◽  
...  

Abstract To date, the noble metal-based nanoparticles have been used in every field of life. The Au and Ag nanoparticles (NPs) have been fabricated employing different techniques to tune the properties. In this study, the methodologies developed and adopted for the fabrication of Au and Ag have been discussed, which include physical, chemical and biological routes. The Au and Ag characteristics (morphology, size, shape) along with advantages and disadvantages are discussed. The Au and Ag NPs catalytic and biomedical applications are discussed. For the Ag and Au NPs characterization, SEM (scanning electron microscope), TEM (transmission electron microscope), FTIR (Fourier transform infra-red spectroscopy), XRD (X-rays diffraction) and DLS (dynamic light scattering) techniques are employed. The properties of Au and Ag NPs found dependent to synthesis approach, i.e., the size, shape and morphologies, which showed a promising Catalytic, drug delivery and antimicrobial agent applications. The review is a comprehensive study for the comparison of Au and Ag NPs synthesis, properties and applications in different fields.


Sign in / Sign up

Export Citation Format

Share Document