scholarly journals Use of plants to clean polluted air: A potentially effective and low-cost phytoremediation technology

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 4650-4654
Author(s):  
Bojin Zhang ◽  
Dian Cao ◽  
Shengdong Zhu

Air pollution poses a great threat to human health, and it has become a worldwide problem that needs to be urgently dealt with. Many measures have been taken to reduce air pollution and improve air quality. These methods are generally costly and require special equipment. Some plants have the ability to assimilate, degrade, or modify toxic pollutants in air into less toxic ones. It is proposed here to develop plant-based technology to clean polluted air at low cost. This air phytoremediation technology has many potential advantages in contrast with traditional air pollution treatment methods. It is simple, potentially cheap, and easily implemented. Plants to be used for air phytoremediation have the potential to reduce pollutants in air and improve air quality; they also fix carbon dioxide through photosynthesis and help to decrease greenhouse gases in the atmosphere. The selected plants can also be used as raw materials for production of energy and bio-based chemicals. However, little research has been carried out on air phytoremediation technology, especially in the basic research area. This editorial gives a brief discussion about air phytoremediation to stimulate more research on this technology and further improve its effectiveness in practical use.

2012 ◽  
Vol 67 (10) ◽  
pp. 961-975 ◽  
Author(s):  
Markus Hölscher ◽  
Christoph Gürtler ◽  
Wilhelm Keim ◽  
Thomas E. Müller ◽  
Martina Peters ◽  
...  

With the growing perception of industrialized societies that fossil raw materials are limited resources, academic chemical research and chemical industry have started to introduce novel catalytic technologies which aim at the development of economically competitive processes relying much more strongly on the use of alternative carbon feedstocks. Great interest is given world-wide to carbon dioxide (CO2) as it is part of the global carbon cycle, nontoxic, easily available in sufficient quantities anywhere in the industrialized world, and can be managed technically with ease, and at low cost. In principle carbon dioxide can be used to generate a large variety of synthetic products ranging from bulk chemicals like methanol and formic acid, through polymeric materials, to fine chemicals like aromatic acids useful in the pharmaceutical industry. Owing to the high thermodynamic stability of CO2, the energy constraints of chemical reactions have to be carefully analyzed to select promising processes. Furthermore, the high kinetic barriers for incorporation of CO2 into C-H or C-C bond forming reactions require that any novel transformation of CO2 must inevitably be associated with a novel catalytic technology. This short review comprises a selection of the most recent academic and industrial research developments mainly with regard to innovations in CO2 chemistry in the field of homogeneous catalysis and processes.


2021 ◽  
Author(s):  
Daniel Westervelt ◽  
Celeste McFarlane ◽  
Faye McNeill ◽  
R (Subu) Subramanian ◽  
Mike Giordano ◽  
...  

<p>There is a severe lack of air pollution data around the world. This includes large portions of low- and middle-income countries (LMICs), as well as rural areas of wealthier nations as monitors tend to be located in large metropolises. Low cost sensors (LCS) for measuring air pollution and identifying sources offer a possible path forward to remedy the lack of data, though significant knowledge gaps and caveats remain regarding the accurate application and interpretation of such devices.</p><p>The Clean Air Monitoring and Solutions Network (CAMS-Net) establishes an international network of networks that unites scientists, decision-makers, city administrators, citizen groups, the private sector, and other local stakeholders in co-developing new methods and best practices for real-time air quality data collection, data sharing, and solutions for air quality improvements. CAMS-Net brings together at least 32 multidisciplinary member networks from North America, Europe, Africa, and India. The project establishes a mechanism for international collaboration, builds technical capacity, shares knowledge, and trains the next generation of air quality practitioners and advocates, including domestic and international graduate students and postdoctoral researchers. </p><p>Here we present some preliminary research accelerated through the CAMS-Net project. Specifically, we present LCS calibration methodology for several co-locations in LMICs (Accra, Ghana; Kampala, Uganda; Nairobi, Kenya; Addis Ababa, Ethiopia; and Kolkata, India), in which reference BAM-1020 PM2.5 monitors were placed side-by-side with LCS. We demonstrate that both simple multiple linear regression calibration methods for bias-correcting LCS and more complex machine learning methods can reduce bias in LCS to close to zero, while increasing correlation. For example, in Kampala, Raw PurpleAir PM2.5 data are strongly correlated with the BAM-1020 PM2.5 (r<sup>2</sup> = 0.88), but have a mean bias of approximately 12 μg m<sup>-3</sup>. Two calibration models, multiple linear regression and a random forest approach, decrease mean bias from 12 μg m<sup>-3 </sup>to -1.84 µg m<sup>-3</sup> or less and improve the the r<sup>2</sup> from 0.88 to 0.96. We find similar performance in several other regions of the world. Location-specific calibration of low-cost sensors is necessary in order to obtain useful data, since sensor performance is closely tied to environmental conditions such as relative humidity. This work is a first step towards developing a database of region-specific correction factors for low cost sensors, which are exploding in popularity globally and have the potential to close the air pollution data gap especially in resource-limited countries. </p><p> </p><p> </p>


2021 ◽  
Author(s):  
Sonu Kumar Jha ◽  
Mohit Kumar ◽  
Vipul Arora ◽  
Sachchida Nand Tripathi ◽  
Vidyanand Motiram Motghare ◽  
...  

<div>Air pollution is a severe problem growing over time. A dense air-quality monitoring network is needed to update the people regarding the air pollution status in cities. A low-cost sensor device (LCSD) based dense air-quality monitoring network is more viable than continuous ambient air quality monitoring stations (CAAQMS). An in-field calibration approach is needed to improve agreements of the LCSDs to CAAQMS. The present work aims to propose a calibration method for PM2.5 using domain adaptation technique to reduce the collocation duration of LCSDs and CAAQMS. A novel calibration approach is proposed in this work for the measured PM2.5 levels of LCSDs. The dataset used for the experimentation consists of PM2.5 values and other parameters (PM10, temperature, and humidity) at hourly duration over a period of three months data. We propose new features, by combining PM2.5, PM10, temperature, and humidity, that significantly improved the performance of calibration. Further, the calibration model is adapted to the target location for a new LCSD with a collocation time of two days. The proposed model shows high correlation coefficient values (R2) and significantly low mean absolute percentage error (MAPE) than that of other baseline models. Thus, the proposed model helps in reducing the collocation time while maintaining high calibration performance.</div>


Author(s):  
L. Marek ◽  
M. Campbell ◽  
M. Epton ◽  
M. Storer ◽  
S. Kingham

The opportunity of an emerging smart city in post-disaster Christchurch has been explored as a way to improve the quality of life of people suffering Chronic Obstructive Pulmonary Disease (COPD), which is a progressive disease that affects respiratory function. It affects 1 in 15 New Zealanders and is the 4th largest cause of death, with significant costs to the health system. While, cigarette smoking is the leading cause of COPD, long-term exposure to other lung irritants, such as air pollution, chemical fumes, or dust can also cause and exacerbate it. Currently, we do know little what happens to the patients with COPD after they leave a doctor’s care. By learning more about patients’ movements in space and time, we can better understand the impacts of both the environment and personal mobility on the disease. This research is studying patients with COPD by using GPS-enabled smartphones, combined with the data about their spatiotemporal movements and information about their actual usage of medication in near real-time. We measure environmental data in the city, including air pollution, humidity and temperature and how this may subsequently be associated with COPD symptoms. In addition to the existing air quality monitoring network, to improve the spatial scale of our analysis, we deployed a series of low-cost Internet of Things (IoT) air quality sensors as well. The study demonstrates how health devices, smartphones and IoT sensors are becoming a part of a new health data ecosystem and how their usage could provide information about high-risk health hotspots, which, in the longer term, could lead to improvement in the quality of life for patients with COPD.


Author(s):  
Eric S. Coker ◽  
Ssematimba Joel ◽  
Engineer Bainomugisha

Background: There are major air pollution monitoring gaps in sub-Saharan Africa. Developing capacity in the region to conduct air monitoring in the region can help estimate exposure to air pollution for epidemiology research. The purpose of our study is to develop a land use regression (LUR) model using low-cost air quality sensors developed by a research group in Uganda (AirQo). Methods: Using these low-cost sensors, we collected continuous measurements of fine particulate matter (PM2.5) between May 1, 2019 and February 29, 2020 at 22 monitoring sites across urban municipalities of Uganda. We compared average monthly PM2.5 concentrations from the AirQo sensors with measurements from a BAM-1020 reference monitor operated at the US Embassy in Kampala. Monthly PM2.5 concentrations were used for LUR modeling. We used eight Machine Learning (ML) algorithms and ensemble modeling; using 10-fold cross validation and root mean squared error (RMSE) to evaluate model performance. Results: Monthly PM2.5 concentration was 60.2 &micro;g/m3 (IQR: 45.4-73.0 &micro;g/m3; median= 57.5 &micro;g/m3). For the ML LUR models, RMSE values ranged between 5.43 &micro;g/m3 - 15.43 &micro;g/m3 and explained between 28% and 92% of monthly PM2.5 variability. Generalized additive models explained the largest amount of PM2.5 variability (R2=0.92) and produced the lowest RMSE (5.43 &micro;g/m3) in the held-out test set. The most important predictors of monthly PM2.5 concentrations included monthly precipitation, major roadway density, population density, latitude, greenness, and percentage of households using solid fuels. Conclusion: To our knowledge, ours is the first study to model the spatial distribution of urban air pollution in sub-Saharan Africa using air monitors developed from the region itself. Non-parametric ML for LUR modeling performed with high accuracy for prediction of monthly PM2.5 levels. Our analysis suggests that locally produced low-cost air quality sensors can help build capacity to conduct air pollution epidemiology research in the region.


2018 ◽  
Vol 6 (1) ◽  
pp. 26-29
Author(s):  
Radovan Slávik ◽  
◽  
Dominika Beňová ◽  
Jozef Gnap ◽  
Ondrej Stopka

The paper focuses on the impact of city logistics on air quality. The first chapter focuses on the EU's transport policy for 2030-2050 to reduce greenhouse gas emissions. The second chapter focuses on air quality in the Slovak Republic and the amount of greenhouse gases in the air. The aim of the contribution is to highlight the impact of road transport on air quality and air pollution as well as the need to reduce these harmful emissions.


2016 ◽  
Author(s):  
Wan Jiao ◽  
Gayle Hagler ◽  
Ronald Williams ◽  
Robert Sharpe ◽  
Ryan Brown ◽  
...  

Abstract. Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of a large number of sensors across a small geographic area would have potential benefits to supplement traditional monitoring networks with additional geographic and temporal measurement resolution, if the data quality were sufficient. To understand the capability of emerging air sensor technology, the Community Air Sensor Network (CAIRSENSE) project deployed low cost, continuous and commercially-available air pollution sensors at a regulatory air monitoring site and as a local sensor network over a surrounding ~ 2 km area in Southeastern U.S. Co-location of sensors measuring oxides of nitrogen, ozone, carbon monoxide, sulfur dioxide, and particles revealed highly variable performance, both in terms of comparison to a reference monitor as well as whether multiple identical sensors reproduced the same signal. Multiple ozone, nitrogen dioxide, and carbon monoxide sensors revealed low to very high correlation with a reference monitor, with Pearson sample correlation coefficient (r) ranging from 0.39 to 0.97, −0.25 to 0.76, −0.40 to 0.82, respectively. The only sulfur dioxide sensor tested revealed no correlation (r  0.5), step-wise multiple linear regression was performed to determine if ambient temperature, relative humidity (RH), or age of the sensor in sampling days could be used in a correction algorithm to improve the agreement. Maximum improvement in agreement with a reference, incorporating all factors, was observed for an NO2 sensor (multiple correlation coefficient R2adj-orig = 0.57, R2adj-final = 0.81); however, other sensors showed no apparent improvement in agreement. A four-node sensor network was successfully able to capture ozone (2 nodes) and PM (4 nodes) data for an 8 month period of time and show expected diurnal concentration patterns, as well as potential ozone titration due to near-by traffic emissions. Overall, this study demonstrates a straightforward methodology for establishing low-cost air quality sensor performance in a real-world setting and demonstrates the feasibility of deploying a local sensor network to measure ambient air quality trends.


2021 ◽  
Author(s):  
Areti Pappa ◽  
Ioannis Kioutsioukis

&lt;p&gt;Expediting urbanization has triggered an increase in cardiopulmonary diseases attributable to fine-particulate air pollution. Air Quality models simulate the dilution and dispersion of air pollutants that affect the atmosphere, contributing crucially to the comprehension of its processes. Air quality forecasts produced by the Copernicus Atmosphere Monitoring Service (CAMS) provide open access to accurate and reliable information but in a coarse resolution. Data-driven models can downscale the forecasts from deterministic air quality models on the basis of reliable measurements. Low-cost air quality sensors are widely known for their increased spatial coverage and economic operational costs, but usually, their reliability is in dispute. In this study, a dense network of calibrated PM2.5 measurements installed in the city of Patras is combined with CAMS forecasts and statistical approaches to generate 24h forecasts of PM&lt;sub&gt;2.5 &lt;/sub&gt;concentrations in an urban area of Greece. The implemented techniques are the analog ensemble (AnEn) and the Long Short-Term Memory (LSTM) network. Auxiliary variables of meteorological origin were also utilized. The required forecasts were retrieved from the European Center for Medium-Range Weather Forecasts (ECMWF), and were pin-pointed to the location of the air quality monitoring stations. The results showed that both methods had comparable performance, with low bias and relatively small errors. In the stations with high PM2.5 levels, AnEn performed better, whereas in the stations and seasons with moderate concentrations LSTM outperformed. A comprehensive validation is presented and discussed. AnEn and LSTM methods were proved reliable tools for air pollution forecasting and can be used for other regions with small modifications.&lt;/p&gt;


2015 ◽  
Vol 113 ◽  
pp. 10-19 ◽  
Author(s):  
I. Heimann ◽  
V.B. Bright ◽  
M.W. McLeod ◽  
M.I. Mead ◽  
O.A.M. Popoola ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document