Investigation of a formaldehyde-free cottonseed flour-based adhesive for interior plywood

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 5546-5557
Author(s):  
Nairong Chen ◽  
Jian Huang ◽  
Kaichang Li

A new formaldehyde-free wood adhesive, primarily composed of defatted cottonseed flour (CF) and polyamine-epichlorohydrin (K736) resin, was investigated for the preparation of interior plywood. Sodium hydroxide was an essential component of the adhesive. The effects of pH values of the CF-K736 adhesive, the CF/K736 weight ratio on the pot life of the adhesive, and the water resistance of the resulting plywood panels were investigated in detail. The hot-pressing temperature and time were optimized in terms of the water resistance of the resulting plywood panels. The resulting 5-ply plywood panels met the industrial water resistance requirements for interior application under the following conditions: pH > 11, CF/K736 weight ratio in the range of 8/1 to 5/1, hot-press temperature ≥ 120 °C, and hot-pressing time > 4 min. The pot life of the adhesive was approximately 3 h when the pH was 12 and the CF/K736 weight ratio was 8/1. The curing mechanism of the adhesive is discussed.

Holzforschung ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 409-414 ◽  
Author(s):  
Nairong Chen ◽  
Jian Huang ◽  
Kaichang Li

AbstractA combination of Kymene®736 (K736) resin [a paper wet strength agent from reactions of hexamethylenediamine (HMDA) and epichlorohydrin (ECH)] and defatted soy flour (DSF) was investigated as a formaldehyde-free wood adhesive. In focus was the pH influence on the pot life of the adhesive and the water resistance of the plywood prepared with the new adhesive. It was found that the pH of the DSF-K736 adhesive had to be ≥11 before the resulting plywood panels could meet industrial water resistance requirements for interior plywood. The DSF/K736 weight ratio significantly affected the water resistance of the resulting 5-ply plywood. The 11/1 was the highest ratio that still enabled the plywood to meet the water resistance requirements. The hot-pressing temperature of ≥110°C and the hot-pressing time of ≥4 min resulted in 5-ply plywood panels with water resistance properties. The probable mechanism is that K736 reacts with nucleophilic groups in DSF and highly crosslinked adhesive networks are formed. This supposition is supported by the presence of an ester band in the Fourier-transform infrared (FTIR) spectrum of the cured DSF-K736 adhesive.


2005 ◽  
Vol 19 (15n17) ◽  
pp. 2663-2668 ◽  
Author(s):  
Z. CHEN ◽  
Z. F. LAI ◽  
K. LI ◽  
D. L. CUI ◽  
N. LUN ◽  
...  

Phase transformation of BN nanoparticles under high pressure (580~860MPa) and low temperature (270~325°C) hot press conditions was investigated. It was found that the contents of orthorhombic boron nitride (oBN) and cubic boron nitride (cBN) increased with the increase of temperature and the prolonging of hot pressing time under high pressure conditions. At the same time, because of the intergrowth of hBN, oBN and cBN. there are strong interactions among these three phases.


2010 ◽  
Vol 44-47 ◽  
pp. 2283-2287
Author(s):  
Ming Hui Guo ◽  
Yuan Yuan

In our research, a commercial poly (lactic acid) (PLA) film was used in combination with wood fiber matrix to generate biodegradable composites by a film stacking technique and hot-press. The results showed the flexural properties and water resistance increased with the increasing of PLA addition. Silane-treated wood fiber composites significantly improved the flexural properties compared to untreated composites. In experiment range, the physical and mechanical properties of composites were better in higher hot-press temperature. The optimal parameters are determined by PLA addition 20%, silane addition 3%, the hot-press temperature 190°C, the hot-press time 10min.Under these parameters, the flexural properties of composites exceeded the requirement of the outdoor boards’ standard, but the water resistance was a little low.


Micromachines ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Surasak Kasetsirikul ◽  
Kimberley Clack ◽  
Muhammad J. A. Shiddiky ◽  
Nam-Trung Nguyen

Paper-based analytical devices have been substantially developed in recent decades. Many fabrication techniques for paper-based analytical devices have been demonstrated and reported. Herein, we report a relatively rapid, simple, and inexpensive method for fabricating paper-based analytical devices using parafilm hot pressing. We studied and optimized the effect of the key fabrication parameters, namely pressure, temperature, and pressing time. We discerned the optimal conditions, including a pressure of 3.8 MPa, temperature of 80 °C, and 3 min of pressing time, with the smallest hydrophobic barrier size (821 µm) being governed by laminate mask and parafilm dispersal from pressure and heat. Physical and biochemical properties were evaluated to substantiate the paper functionality for analytical devices. The wicking speed in the fabricated paper strips was slightly lower than that of non-processed paper, resulting from a reduced paper pore size after hot pressing. A colorimetric immunological assay was performed to demonstrate the protein binding capacity of the paper-based device after exposure to pressure and heat from the fabrication. Moreover, mixing in a two-dimensional paper-based device and flowing in a three-dimensional counterpart were thoroughly investigated, demonstrating that the paper devices from this fabrication process are potentially applicable as analytical devices for biomolecule detection. Fast, easy, and inexpensive parafilm hot press fabrication presents an opportunity for researchers to develop paper-based analytical devices in resource-limited environments.


2012 ◽  
Vol 602-604 ◽  
pp. 743-746 ◽  
Author(s):  
Xiao Mei Wang ◽  
Jian Zhang Li ◽  
Ji Zhi Zhang ◽  
Qiang Gao

In this study, urea-formaldehyde resin was modified and used to bond three-ply plywood. The effect of hot press parameters on properties of plywood bonded by the modified urea-formaldehyde resin adhesive was investigated by an L(43) experimental design. The optimum technical parameters of hot press were obtained. Conclusions were as follows: (1) After modification, the free formaldehyde content of the urea-formaldehyde resin and the formaldehyde emission of resulting plywood were reduced by 74% and 70%, respectively; (2) The optimum technical parameters were 140°C of hot-pressing temperature, 80s/mm of hot-pressing time, 300g/m2 of glue content, and 0.8% of curing agent; (3) Under the optimum technical parameters, the bond strength and the formaldehyde emission of the plywood was 1.17MPa and 0.47mg/L, respectively.


Author(s):  
Andri Taufick Rizaluddin ◽  
Yusup Setiawan

Solid waste of paper mill hydrapulper reject (HR) has a relatively high plastic content, with around 45-49% composition of the total HR. About 99% of the plastic has the catagory of High Density Polyethylene (HDPE). HDPE is a type of Polyethylene (PE) plastic which has high recyclability and may be reformed at high temperature. This study tries to discribe the potential of producing particleboards derived from HR using a hot-press method. Molded HR was being hot-pressed at a presssure of 25 kgf/cm2for 5 – 15 minutes of residence time, with a variation of of the amount of HR from 150-500 gram, and variations in hot-press temperature of 150-180°C. The resulting product is then analyzed for parameters of moisture content, density, water absorption, thickness swelling, and internal bond compared to SNI 03-2105-2006 and JIS A 5908-2003. The results showed that most of the samples were relatively accepted to the SNI. The best results are obtained at HR weight of 250 gram with 165 and 180°C pressing temperature, and pressing time more than 10 minutes. The addition of HDPE pellets shows an increment of density and decrement of moisture content of particleboard, while the addition of MA shows some decrements of moisture content and water absoption of particleboard.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 613 ◽  
Author(s):  
Petar Antov ◽  
George I. Mantanis ◽  
Viktor Savov

The potential of producing ecofriendly composites from industrial waste fibres, bonded with magnesium lignosulfonate, a lignin-based formaldehyde-free adhesive, was investigated in this work. Composites were produced in the laboratory using the following parameters: a hot press temperature of 210 °C, a pressing time of 16 min, and a 15% gluing content of magnesium lignosulfonate (on the dry fibres). The physical and mechanical properties of the produced composites were evaluated and compared with the European Standard (EN) required properties (EN 312, EN 622-5) of common wood-based panels, such as particleboards for internal use in dry conditions (type P2), load-bearing particleboards for use in humid conditions (type P5), heavy-duty load-bearing particleboards for use in humid conditions (type P7), and medium-density fibreboards (MDF) for use in dry conditions. In general, the new produced composites exhibited satisfactory mechanical properties: a bending strength (MOR) (18.5 N·mm−2) that was 42% higher than that required for type P2 particleboards (13 N·mm−2) and 16% higher than that required for type P5 particleboards (16 N·mm−2). Additionally, the modulus of elasticity (MOE) of composites (2225 N·mm−2) was 24% higher than that required for type P2 particleboards (1800 N·mm−2) and equivalent to the required MOE of MDF panels for use in dry conditions (2200 N·mm−2). However, these ecofriendly composites showed deteriorated moisture properties, i.e., 24 h swelling and 24 h water absorption, which were a distinct disadvantage. This should be further investigated, as modifications in the lignosulfonate formula used and/or production parameters are necessary.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
W. Gul ◽  
A. Khan ◽  
A. Shakoor

Hot pressing temperature is determined according to the performance of boards, type of glue, and production efficiency of hot press. During hot pressing, the thermal energy has enhanced the plasticity of the fiber and created conditions for the integration of different bonds. The thermal energy will cause the moisture in raw board to vaporize. Temporary heating will expedite the solidification of hot set resin for decreased friction and increased fluidity. The hot pressing temperature usually refers to the temperature of hot pressing plate, but what plays function in actual use is the temperature inside the raw board. This research investigates the performance of MDF with respect to hot pressing temperature. The strength and water resistance of the product are improved with the increase of hot pressing temperature from 140°C to 160°C, the Modulus of Rupture (MOR) is increased by 9.8%, the Internal Bonding (IB) is increased by 33.6%, the water absorption (Wt) is decreased by 38.2%, and the thickness expansion rate (Ts) is decreased by 15.2%.


2017 ◽  
Vol 78 (3) ◽  
pp. 34813 ◽  
Author(s):  
Naima Rhazi ◽  
Mina Oumam ◽  
Abdessadek Sesbou ◽  
Hassan Hannache ◽  
Fatima Charrier-El Bouhtoury

The objective of this research was to develop ecological adhesives for bonding plywood panels using lignosulfonates, a common waste product of the wood pulp industry, and natural tannin extracted from Moroccan bark of Acacia mollissima using different process. Natural tannin and lignin were used in wood adhesives formulation to substitute resins based on phenol and formaldehyde. To achieve this, the lignosulfonates were glyoxalated to enhance their reactivity and the used tannins obtained by three different extraction methods were compared with commercial mimosa tannin. The proportion of Acacia mollissima tannins and lignosulfonates, the pressing time, the pressing temperature, and the pressure used were studied to improve mechanical properties, and bonding quality of plywood panel. The properties of plywood panels produced with these adhesives were tested in accordance with normative tests. Thus, the tensile strength, and the shear strength were measured. The results showed that the performance of the plywood panels made using biobased tannin adhesives was influenced by physical conditions such as pressure, press temperature as well as by chemical conditions, such as the tannin-lignin ratio. It exhibited excellent mechanical properties comparable to commercially available phenol-formaldehyde plywood adhesives. This study showed that biobased adhesives formulations presented good and higher mechanical performance and no formaldehyde emission.


2014 ◽  
Vol 1033-1034 ◽  
pp. 1048-1053 ◽  
Author(s):  
Xin Li Zhang ◽  
Hong Hui Zhang ◽  
Yi Qiang Wu ◽  
Yun Chu Hu

In order to improve the water resistance of silicate wood adhesive, a kind of silicate adhesive was prepared from water glass with silica as curing agent, and ammonium stearate as modifier. The chemical structure, surface morphology and thermal properties of the silicate adhesive were characterized by Fourier transform infrared spectrometer, scanning electron microscope, and thermo-gravimetric analyzer. As the two main measures of adhesion properties, the bonding strength and water resistance were also determined. The results showed that ammonium stearate was successfully introduced into the molecule structure of silicate, the silicate adhesive have good thermal stability in the range of 30~800 °C and the modified silicate adhesive had more smooth cured morphology. The bonding strength and 24h water absorption rate of poplar plywood glued by the silicate adhesive was 0.71 MPa and 22.81%, respectively, reaching the grade II of plywood performance's national standard.


Sign in / Sign up

Export Citation Format

Share Document