scholarly journals Effects of pine (Pinus densiflora) sawdust on cordycepin yield from medicinal fungus Cordyceps militaris in submerged culture

BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 6643-6660
Author(s):  
Si Young Ha ◽  
Ji Young Jung ◽  
Jai Hyun Park ◽  
Chan Yeol Yu ◽  
Jae-Hyeon Park ◽  
...  

Cordycepin (3′-deoxyadenosine) is a nucleoside analog that exhibits a broad spectrum of biological activity. The effects of different tree sawdust on cordycepin as bioactive substances for mycelium growth were investigated. Pine sawdust was essential for increasing cordycepin content. Furthermore, a 1% NaOH-pretreated pine sawdust produced the highest cordycepin yield. The cordycepin yield of mycelium in submerged culture was significantly increased when the particle size was 100-mesh and the weight was 20 g/L of 1% NaOH-pretreated pine sawdust, with an increase of up to 38% compared to the control (only sabouraud dextrose broth (SDB)). The results demonstrated the effects of different tree sawdust on the biosynthesis of cordycepin as bioactive substances and that replacing traditional medium (SDB medium) with 1% NaOH-pretreated pine sawdust can increase the yield of cordycepin. After optimization of cordycepin production from Cordyceps militaris cultivated in medium containing 1% NaOH-pretreated pine sawdust using RSM (response surface methodology) BBD (Box-Behnken design) in its canonical form, the optimum combination was: particle size, 113.7-mesh; input weight, 11.9 g/L; and incubation time, 67.8 h. The model predicted a maximum yield of 922.6 μg/mL for cordycepin.

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 677
Author(s):  
Sara A. Abosabaa ◽  
Aliaa N. ElMeshad ◽  
Mona G. Arafa

The objective of the present research is to propose chitosan as a nanocarrier for caffeine—a commonly used drug in combating cellulite. Being a hydrophilic drug, caffeine suffers from insufficient topical penetration upon application on the skin. Chitosan nanoparticles loaded with caffeine were prepared via the ionic gelation technique and optimized according to a Box–Behnken design. The effect of (A) chitosan concentration, (B) chitosan solution pH, and (C) chitosan to sodium tripolyphosphate mass ratio on (Y1) entrapment efficiency percent, (Y2) particle size, (Y3) polydispersity index, and (Y4) zeta potential were studied. Subsequently, the desired constraints on responses were applied, and validation of the optimization procedure was confirmed by the parameters exhibited by the optimal formulation. A caffeine entrapment efficiency percent of 17.25 ± 1.48%, a particle size of 173.03 ± 4.32 nm, a polydispersity index of 0.278 ± 0.01, and a surface charge of 41.7 ± 3.0 mV were attained. Microscopical evaluation using transmission electron microscope revealed a typical spherical nature of the nanoparticles arranged in a network with a further confirmation of the formation of particles in the nano range. The results proved the successful implementation of the Box–Behnken design for optimization of chitosan-based nanoparticles in the field of advanced polymeric systems for pharmaceutical and cosmeceutical applications.


2021 ◽  
Vol 18 ◽  
Author(s):  
Ashish Kumar ◽  
Ajit Singh ◽  
S.J.S Flora ◽  
Rahul Shukla

Purpose: In this study, a novel D-α-tocopheryl polyethylene glycol succinate (TPGS) modified bovine serum albumin (BSA) nanoparticles were developed for delivery of Anastrozole (ANZ) which is optimized by Box-Behnken design (BBD). This TPGS-ANZ-BSA NPs are evaluated for their physicochemical and drug release characteristics. Methods: TPGS-ANZ-BSA NPs were prepared by desolvation thermal gelation method andthe effects of critical process parameter (CPP)which are BSA amount, TPGS concentration and stirring speed on the critical quality attributes (CQA) such as % drug loading (%DL) and particle size were studied using BBD. TPGS-ANZ-BSA NPs were characterized using different spectroscopic techniques including UV-Visible and FTIR is used to confirm the entrapment of ANZ in BSA. DSC and PXRD revealed the amorphization of ANZ in the TPGS-ANZ-BSA NPs after freeze drying. Scanning electron microscopy (SEM) analysis was performed for the surface morphologyanalysesNPs. In vitro release studies were performed at pH 5.5 and pH 7.4 for 48h to mimic tumour microenvironment. Results: The BBD optimized batch showed 107 nm particle size with % DL of 8.5± 0.5 of TPGS-ANZ-BSA NPs. The spectroscopic and thermal characterizations revealed the successful encapsulation of ANZ inside the nanoparticles.The TPGS-ANZ-BSA NPs were found to exhibit burst release at pH 5.5 and sustained release at pH 7.4. The short-term stability of drug-loaded nanoparticles displayed no significant changes in physicochemical properties at room temperature for period of one month. Conclusion: The BBD optimized TPGS-ANZ-BSA nanoparticles showed enhanced physiochemical properties for ANZ and potential candidate for anticancer agent drugs delivery.


Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 596
Author(s):  
Hibah M. Aldawsari ◽  
Usama A. Fahmy ◽  
Fathy Abd-Allah ◽  
Osama A. A. Ahmed

Avanafil (AVA) is a second-generation phosphodiesterase-5 (PDE5) inhibitor. AVA shows high selectivity to penile tissues and fast absorption, but has a bioavailability of about 36%. The aim was to formulate and optimize AVA-biodegradable nanoparticles (NPs) to enhance AVA bioavailability. To assess the impact of variables, the Box–Behnken design was utilized to investigate and optimize the formulation process variables: the AVA:poly (lactic-co-glycolic acid) (PLGA) ratio (w/w, X1); sonication time (min, X2); and polyvinyl alcohol (PVA) concentration (%, X3). Particle size (nm, Y1) and EE% (%, Y2) were the responses. The optimized NPs were characterized for surface morphology and permeation. Furthermore, a single-oral dose (50 mg AVA) pharmacokinetic investigation on healthy volunteers was carried out. Statistical analysis revealed that all the investigated factors exhibited a significant effect on the particle size. Furthermore, the entrapment efficiency (Y2) was significantly affected by both the AVA:PLGA ratio (X1) and PVA concentration (X3). Pharmacokinetic data showed a significant increase in the area under the curve (1.68 folds) and plasma maximum concentration (1.3-fold) for the AVA NPs when compared with raw AVA. The optimization and formulation of AVA as biodegradable NPs prepared using solvent evaporation (SE) proves a successful way to enhance AVA bioavailability.


Phytomedicine ◽  
2011 ◽  
Vol 18 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Jack H. Wong ◽  
Tzi Bun Ng ◽  
Hexiang Wang ◽  
Stephen Cho Wing Sze ◽  
Kalin Yanbo Zhang ◽  
...  

FLORESTA ◽  
2015 ◽  
Vol 45 (4) ◽  
pp. 713 ◽  
Author(s):  
Diego Aleixo Silva ◽  
Gabriela Tami Nakashima ◽  
João Lúcio Barros ◽  
Alessandra Luzia Da Roz ◽  
Fabio Minoru Yamaji

O objetivo deste trabalho foi caracterizar a produção de briquetes feita a partir de quatro diferentes biomassas residuais. Foram utilizados os resíduos de serragem de Eucalyptus sp, serragem de Pinus sp, bagaço de cana-de-açúcar (Saccharum officinarum L.) e palha de cana-de-açúcar. Os resíduos foram tratados para que obtivessem 12% de umidade e uma granulometria inferior a 1,70 mm. Foram produzidos 15 briquetes para cada um dos quatro tratamentos. A pressão utilizada foi de 1250 kgf.cm-2 durante 30 segundos. Os briquetes obtiveram densidades que oscilaram 0,88 a 1,11 g.cm-3. Isto representou uma faixa de 5 a 14 vezes a menos de ocupação de volume para uma mesma quantidade de massa. O poder calorifico foi de 19.180 J.kg-1 e 20.315 J.kg-1 para as serragens de eucalipto e pinus respectivamente. Para o bagaço e palha de cana os valores foram de 18.541 J.kg-1 e 15.628 J.kg-1. A palha da cana-de-açúcar apresentou um teor de cinzas de 12%. As expansões dos tratamentos oscilaram 4 a 9% e as resistências mecânicas variaram de 1,215 MPa à 0,270 MPa. Todos os briquetes se mostraram resistentes para um empilhamento superior a 10 m de altura. O procedimento adotado pode ajudar a diminuir o espaço de estocagem e de transporte. AbstractThis research aims to characterize the production of briquettes from four different biomasses. We used residues such as Eucalyptus sp sawdust, Pinus sp sawdust , sugarcane bagasse (Saccharum officinarum L.) and sugarcane straw. The residues were treated to obtain 12% moisture content and particle size less than 1.70 mm. We produced 15 briquettes for each treatment. The pressure used was 1250 kgf.cm-2 for 30 seconds. The briquettes obtained densities ranged from 0.88 to 1.11 g.cm-3. This represented a range of 5 to 14 times less volume occupancy for the same amount of mass. The high heating value (HHV) was 19,180 J.kg-1 and 20,315 J.kg-1 for eucalyptus and pine sawdust respectively. The HHV for the bagasse was 18,541 J.kg-1 and for straw was 15,628 J.kg-1. The straw presented an ash content of 12%. The expansions of the treatments ranged 4 to 9% and mechanical resistances ranging from 1,215 MPa to 0,270 MPa. All briquettes were resistant to a higher stacking to 10 m high. The methods can help to decrease the space of storage and transport.Keywords: Waste; biofuel; energy; compression; stacking.


2015 ◽  
Vol 10 (4) ◽  
pp. 65-69
Author(s):  
Митрофанов ◽  
Eduard Mitrofanov ◽  
Коршунов ◽  
Aleksandr Korshunov ◽  
Владимиров ◽  
...  

The effectiveness of herbicides in spring barley crops on different nutrition backgrounds was studied in field experiments on dark gray forest soil of medium loamy particle size distribution in the conditions of Volga-Vyatka region. It is revealed that on both backgrounds of fertilizer application the barley formed a maximum yield, when applying the herbicide Bomba. When using this herbicide in making mineral fertilizers N54P54K54 the productivity was 2.71 tons per hectare and a dose N70P70K70 – it was 2.83 tons per hectare. On average for three years, the maximum (11.35%) protein content was appeared in the preparation by Sekator turbo herbicide on the background of fertilizer application of N70P70K70.


Sign in / Sign up

Export Citation Format

Share Document