scholarly journals Chemical investigation of wood tree species in a temperate forest east-northern Romania

BioResources ◽  
2007 ◽  
Vol 2 (1) ◽  
pp. 41-57 ◽  
Author(s):  
Ruxanda Bodirlau ◽  
Iuliana Spiridon ◽  
Carmen Alice Teaca

A quantitative evaluation of wood chemical components for some tree species in a forest area from east-northern Romania is presented here, through a comparative study from 1964 to 2000. Investigation upon the wood tree-rings in a Quercus robur L. tree species, as a dominant species, as regards its chemical composition and structure of the natural polymer constituents - cellulose and lignin - was also performed through chemical methods to separate the main wood components, FT-IR spectroscopy, and thermogravimetry. Having in view the impact of climate and external factors (such as pollutant depositions), some possible correlations between wood chemical composition and its further use can be made. The FT-IR spectra give evidence of differences in the frequency domains of 3400-2900 cm-1 and 1730-1640 cm-1, due to some interactions between the chemical groups (OH, C=O). The crystallinity index of cellulose presents variations in the oak wood tree-rings. Thermogravimetry analyses show different behaviour of cellulose at thermal decomposition, as a function of radial growth and tree’s height. A preliminary chemical investigation of oak wood sawdust shows a relatively high content of mineral elements (ash), compared with a previous study performed in 1964, fact that may indicate an intense drying process of the oak tree, a general phenomenon present in European forests for this species.


2019 ◽  
Vol 34 (3-4) ◽  
pp. 145-156
Author(s):  
Bogdan Nikolic ◽  
Hadi Waisi ◽  
Sanja Djurovic ◽  
Milos Dugalic ◽  
Vladan Jovanovic

We surveyed different aspects of the application of agrochemicals (pesticides and foliar non-standard fertilizers) on the nutritive value and other non-yield characteristics of crop plants. The survey was based on results of our own trials and studies conducted by other researchers. Various parameters of plant and seedling growth, and yield, were analyzed, as well as the chemical composition, and energetic and thermodynamic parameters of plants in order to better assess the impact of these agrochemicals on crops. The application of various agrochemicals has been found to affect the germination of seeds produced by treated plants. The most significant and most diverse results have been obtained by analyzing the yield and yield components of many different crops (field crops, fruits, vegetables), as well as their chemical composition (mineral elements, different sugars, secondary metabolites, etc.) in terms of improving their nutritive quality. It was found that in maize seedlings it occurs by changing the content of various elements, as well as polyphenol profiles and thermodynamic parameters, and the effects did not only depend on the dosage of agrochemicals but also on maize genotype. We also found that agrochemicals affected the energetic and thermodynamic parameters of individual maize plants, as well as the parameters of plant growth and yield. It was noticed that these agrochemicals greatly affected the content of microelements, starch and crude proteins in maize and barley, sugar and polyphenol contents in various fruit trees and soybean. We noted that in certain agroecological situations these agrochemicals have led to spectacular magnification of yields of different crops, but there were also situations when they did not have any positive effect on crop yield, which is discussed also in the context of results of other researchers.



2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Makinde Folasade Maria ◽  
Joel Ifeoluwa Hannah

In this study, the effect of processing methods on the nutritional quality and functional properties of cashew (Anacardium occidentale Linn) kernels were investigated. The kernels were soaked, autoclaved, roasted or germinated at varying time duration; raw kernel served as control. The samples were analysed for chemical, mineral bioavailability and functional properties. Data was subjected to analysis of variance and means were separated by the Duncan multiple range test. The result of chemical composition analyses revealed that raw cashew kernels contained 3.55±0.08% moisture, 21.3±0.05% protein, 45.0±0.15% fat, 2.53±0.02% fibre, 1.59±0.02% ash, 26.1±0.01% carbohydrate, 521.75 Kcal/g energy, 2210.09±0.02mg/kg calcium, 1712.54±0.03mg/kg magnesium, 60.04±0.01 mg/kg iron and 36.74±0.02mg/kg zinc. Tannin, phytate and oxalate concentrations in the raw cashew kernel were 10.14±0.03 mg/kg, 99.30±0.02mg/kg and 11.03±0.03mg/kg respectively. Increased fat, ash and fibre levels were noted for treated samples compared to raw kernels. Mineral concentrations were increased significantly by various treatments compared to raw kernel; however, germination resulted in the highest increase of mineral content. A reduction trend was observed in phytate, oxalate and tannin concentrations in the treated samples with respect to increased processing time. Consequently, various treatments influenced the bioavailability of mineral elements. Treated samples exhibited significant differences in loose and packed bulk densities, water and oil absorption capacities when compared to raw kernels. Germination shows potential to generate not only much needed nutrients in cashew for human development, but also improved bioavailability of nutrients and functionality compared to other processing methods. This approach can used in Community Nutrition and Emergency Feeding Programmes, in developing countries, where the consequence of anti-nutritional factors may worsen the incidence of malnutrition and disease. 



OENO One ◽  
2022 ◽  
Vol 56 (1) ◽  
pp. 17-28
Author(s):  
Mathilde Gadrat ◽  
Joël Lavergne ◽  
Catherine Emo ◽  
Pierre Louis Teissedre ◽  
Kleopatra Chira

Toasting is a key step in the barrel-making process. It plays an important role in the breakdown of oak wood compounds and thus influences the chemical composition and organoleptic properties of wines and brandies. However, the effect of toasting on distilled spirit quality has not yet been extensively studied. The objective of this study was therefore to study the impact of toasting on cognac eaux-de-vie by characterising the eaux-de-vie sensorially after 12 months of ageing. Eight eaux-de-vie aged in barrels with 8 different toasts were studied. The 8 toasts represented 4 different temperatures (low, medium, medium plus and high) and two toasting lengths for each temperature (one so-called “normal” and the other “slow”). Sensory analysis was carried out on these eaux-de-vie through several tests. First, a sorting test showed the differences between the samples and then training was carried out on previously chosen descriptors in order to build a sensory profile and perform a ranking test. The study was realised for two alcohol levels: 60 % (v/v), which is the alcohol level of eaux-de-vie in barrels, and 40 % (v/v), which is the alcohol level of a commercial cognac. This approach demonstrated that barrel toasting generally leads to significant sensorial differences in eaux-de-vie during ageing. These differences are greater between a lightly and a highly toasted barrel. This study is a first step in the characterisation of cognac eaux-de-vie aged in barrels made with different toasts.



2018 ◽  
Vol 5 (8) ◽  
pp. 180676 ◽  
Author(s):  
Mingming Qi ◽  
Xiaoyu Hua ◽  
Xiaoyuan Peng ◽  
Xiufeng Yan ◽  
Jixiang Lin

Aralia elata buds contain many nutrients and have a pleasant taste with a unique flavour. Previous studies mainly focused on triterpene saponins in the root bark of this species, but little information existed concerning other chemical components, especially in the buds. To better understand the nutritional value of A. elata , we compared total flavonoids, total saponins, phenolic compounds and mineral element contents in the buds of A. elata collected from eight different geographical regions (S1: Benxi; S2: Linjiang; S3: Pingwu; S4: Enshi; S5: Changbaishan; S6: Shangzhi; S7: Xiaoxinganling and S8: Harbin) in China. The results showed that the basic composition in the buds presented a wide variation, with ash (8.76–10.35%), crude fibre (5.38–11.07%), polysaccharides (33.85–46.79 mg g −1 ), total flavonoid content (TFC, 4.06–48.63 mg g −1 ) and total saponins (13.62–27.85 mg g −1 ). UPLC combined with the LC-MS/MS method was used for the phenolic compounds analysis, and 11 phenolic compounds were identified and quantified in the eight samples. The total phenolic content in Enshi (S4) was significantly higher than others, and quercetin was the predominant phenolic compound in this sample. We used ICP-OES to identify and quantify nine mineral elements in the buds. The Fe and Cu contents in S5 were much higher than that of others. We obtained maximum Mg, Mn, Co and Ni contents in S4, and found rich Zn content in S7. Moreover, the maximum estimated quantities of Ca and Sr were found in S8. This study indicated that the chemical composition in the buds of A. elata was obviously affected by geographical origin. Our results provided an essential theoretical basis of quality evaluation of A. elata buds in the food production field.



Holzforschung ◽  
2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Bailing Sun ◽  
Junliang Liu ◽  
Shujun Liu ◽  
Qing Yang

Abstract Neosinocalamus affinis Keng is widely grown in south-western China for pulp and paper production. Rapid assessment of the chemical properties of N. affinis is necessary for both bamboo breeding and industrial utilization. This study was performed to investigate the abilities of Fourier transform near-infrared spectroscopy in the diffuse reflectance mode (FT-NIR-DR) and Fourier transform infrared attenuated total reflectance (FT-IR-ATR) spectroscopy to predict the contents of holocellulose, α-cellulose, Klason lignin, and NaOH extractives in N. affinis. Partial least squares regression models based on the raw and preprocessed spectra, including multiplicative scatter correction (MSC) and Savitzky-Golay 1st and 2nd derivative spectra, were developed for the chemical components of bamboo. The NIR-based calibrations displayed better performance than those using FT-IR-ATR spectra. The best calibrations developed by both methods for properties all had satisfactory correlations, with coefficient of determination (R2 c) values ranging from 0.81 (Klason lignin by FT-IR and MSC) to 0.98 (α-cellulose by FT-NIR and 2nd derivative), and root mean standard error of calibration between 0.50 and 1.47%. When applied to prediction sets, the correlations were good, with R2 p above 0.68. The results demonstrate that both spectroscopic methods, combined with chemometric strategies, could rapidly predict the chemical composition of bamboo.



2022 ◽  
Author(s):  
Paulo Henrique Fernandes Pereira ◽  
Heitor Luiz Ornaghi ◽  
Daniel Magalhães de Oliveira ◽  
Barbara Pereira ◽  
Valdeir Arantes ◽  
...  

Abstract Millions of tons of fruit wastes are generated globally every year from residual agriculture, which makes essential to find alternative uses to increase their aggregate value and reduce the impact of environmental damage. The present study aimed to explore pineapple peel as an alternative source of cellulose by evaluating its composition and physical properties, which are essential to provide a clue to its application function diverse. Cellulose was extracted by a sequence of chlorine-free treatments to delignify the fresh pineapple peels, followed by characterization using chemical composition, XRD, FTIR, SEM and TGA to determine its crystallinity, structural properties, morphology thermal characteristics, and thermal degradation kinetic study. The result revealed that the pineapple peel amorphous segments containing hemicelluloses and lignin were extensively removed with increasing chemical treatments, leading to increased purity, crystallinity index and thermal stability of the extracted materials. The maximum degradation, and crystallinity index of the 2B isolated from the PPF are 150 °C and 80.91% respectively. The cellulose content increased from 24.05% (pineapple peel) to 80.91% (bleached cellulose). These results indicated that pretreatment via bleaching has suitable potential applications in nanocrystal production and suggests possible uses in the development of cellulose nanocrystal and application for packaging films.



2018 ◽  
Vol 69 (4) ◽  
pp. 961-964
Author(s):  
Andrei Vasile Olteanu ◽  
Georgiana Emmanuela Gilca Blanariu ◽  
Gheorghe Gh. Balan ◽  
Dana Elena Mitrica ◽  
Elena Gologan ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become of major interest worldwide, it is estimated that more than 20% of the general population suffer from liver steatosis. NAFLD is highly associated with metabolic risk factors like type 2 diabetes mellitus, obesity and dyslipidemia, the patients diagnosed with NAFLD should adopt a high fiber low calorie diet, with reduced saturated fat and carbohydrates content, leading to weight loss and improvement of metabolic profile. Our study is aiming to shape the profile of the patient interested in being informed related to food quality and chemical composition and to evaluate the aspects on the food products label which are important for the customer. Between June 2017 and December 2017, 83 patients diagnosed with NASH were included in the study, representing the study group, while 33 subjects, without metabolic syndrome or digestive diseases, selected from patient list belonging to two general practitioners, constituted the control group. Related to the interest of being informed about the chemical composition and nutritional value of the products bought, the study showed a low interest for the provided information on nutritional value. lack of confidence in the provided information and complexity of the information are understandable, the high number of subject reasoning through lack of immediate clinical benefit is surprising. Among the healthy population the willingness to pay attention to this aspect is extremely low.



2019 ◽  
Vol 9 (4) ◽  
pp. 268-279
Author(s):  
Mohamed E.I. Badawy ◽  
Ibrahim E.A. Kherallah ◽  
Ahmed S.O. Mohareb ◽  
Mohamed. Z.M. Salem ◽  
Hameda A. Yousef

Background:Plant extracts are important products in the world and have been widely used for isolation of important biologically active products. Because of their significant environmental impact, extensive research has been explored to determine the antimicrobial activity of plant extracts.Methods:Acetone extracts of the bark and leaf of Cupressus sempervirens and Juniperus phoenicea, collected from three different altitudes (125, 391, and 851 m high of sea level) at Al- Jabel Al-Akhdar area, Libya were obtained and analyzed by GC/MS. The antimicrobial activity of the extracts was further evaluated against plant bacteria Rhizobium radiobacter, Erwinia carotovora, Rhodococcus fascians and Ralstonia solanacearum and fungus Botrytis cinerea.Results:The impact of the altitude from the sea level on the quantity and chemical constituents of the extracts was investigated. The yield was largely dependent on tree species and the highest yield (6.50%) was obtained with C. sempervirens L bark of altitude III (851 m of the sea level), while the lowest (1.17%) was obtained with the leaf extract of C. sempervirens L from altitude I (125 m). The chemical composition analyzed by GC/MS confirmed that the leaf extracts of C. sempervirens and J. phoenicea contained a complex mixture of monoterpene hydrocarbons, sesquiterpenes, diterpenes, diterpenoids, terpenophenolic, steroids and phthalates. However, the bark extracts of both trees contained a mixture of sesquiterpenes, diterpenes, diterpenoids, terpenophenolics, phthalates, retinol and steroids. These constituents revealed some variability among the extracts displaying the highest interesting chemotype of totarol (terpenophenolic) in all extracts (14.63-78.19% of the total extract). The extracts displayed a noteworthy antifungal potency with varying degrees of inhibition of growth with EC50 values ranged from 78.50 to 206.90 mg/L. The extracts obtained from the leaves of C. sempervirens showed that the highest inhibitory activity was obtained with the extract of altitude II (391 m) with MIC 565, 510, 380 and 710 mg/L against E. carotovora, R. fascians, and R. radiobacter and R. solanacearum, respectively.Conclusion:Based on antimicrobial activity, raw plant extracts can be a cost-effective way to protect crops from microbial pathogens. Because plant extracts contain several antimicrobial compounds, the development of resistant pathogens can be delayed.



2018 ◽  
Vol 46 (2) ◽  
pp. 258-267
Author(s):  
J.M. Alonso Vega ◽  
Pedro H. Toledo

Lessonia berteroana (ex L. nigrescens) is kelp freely harvested from Open Access Areas (OAA), and to some extent controlled, from Management and Exploitation Areas for Benthic Resources (MEABR). Harvesting pressures can change population dynamics, mainly in OAAs. In particular, harvesting may alter the chemical components of plants. Therefore, the aim of this study was to determine the harvesting effects on the chemical composition of L. berteroana from MEABR and OAA sampled during different seasons (spring and fall) and at two sites (Talquilla and Lagunillas) near Coquimbo (30°S), Chile. The crude protein (13.5 ± 1.0%), total lipids (0.9 ± 0.2%), crude fiber (16.3 ± 1.6%), ash (30.1 ± 1.5%), and nitrogen-free extract (39.2 ± 2.0%) contents of L. berteroana were within reference values for Laminariales species. Population descriptors and chemical analyses showed that harvesting had local effects, rather than being affected by a resource management strategy (OAA vs MEABR). The seasonal anticipator nature of L. berteroana may explain the detected seasonality of it's chemical composition. Regarding functional morphological structures, chemical composition in the fronds was more variable than in the stipes and perennial holdfast, probably since leaves are ephemeral structures susceptible to environmental changes and that play a functional, rather than structural, role in kelp. In the context of Chilean kelp resource management, monitoring chemical composition is useful for determining optimal harvesting periods to local scale and for deciding when commercially valuable compounds, such as alginate, should be extracted. These data also complement harvesting pressure indicators based on L. berteroana demographic parameters.



2020 ◽  
Vol 3 (1) ◽  
pp. 49
Author(s):  
Edgaras Linkevičius ◽  
Gerda Junevičiūtė

Climate change and warming will potentially have profound effects on forest growth and yield, especially for pure stands in the near future. Thus, increased attention has been paid to mixed stands, e.g., pine and beech mixtures. However, the interaction of tree species growing in mixtures still remains unknown. Thus, the aim of this study was to investigate the impact of the interspecific and intraspecific competition to diameter, height, and crown width of pine and beech trees growing in mixtures, as well as to evaluate the impact of climatic indicators to the beech radial diameter increment. The data was collected in 2017 at the mixed mature pine beech double layer stand, located in the western part of Lithuania. The sample plot of 1.2 hectare was established and tree species, diameter at the breast height, tree height, height-to-crown base, height-to-crown width, and position were measured for all 836 trees. Additionally, a representative sample of radial diameter increments were estimated only for the beech trees by taking out core discs at the height of 1 m when the stand was partially cut. Competition analysis was based on the distance-dependent competition index, which was further based on crown parameters. Climatic effect was evaluated using classification and regression tree (CART) analysis. We found almost no interspecific competition effect to diameter, height, or crown width for both tree species growing in the first layer. However, it had an effect on beeches growing in the second layer. The intraspecific competition effect was important for pine and beech trees, showing a negative effect for both of them. Our results show the possible coexistence of these tree species due to niche differentiation. An analysis of climatic indicators from 1991–2005 revealed that precipitation from February–May of the current vegetation year and mean temperatures from July to September expressed radial diameter increment effects for beech trees. Low temperatures during March and April, as well as high precipitation during January, had a negative effect on beech radial increments. From 2006–2016, the highest effect on radial diameter increments was the mean temperatures from July to September, as well as the precipitation in January of the current year. From 1991–2016, the highest effect on radial diameter increments was the temperature from July to September 1991–2016 and the precipitation in June 1991–2016. Generally, cool temperatures and higher precipitation in June had a positive effect on beech radial increments. Therefore, our results show a sensitivity to high temperatures and droughts during summer amid Lithuanian’s growth conditions.



Sign in / Sign up

Export Citation Format

Share Document