scholarly journals Decay resistance, hardness, water absorption, and thickness swelling of a bagasse fiber/plastic composite

BioResources ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. 3289-3299 ◽  
Author(s):  
Seyyed Khalil Hosseinihashemi ◽  
Mahdi Modirzare ◽  
Vahidreza Safdari ◽  
Behzad Kord

The decay resistance, hardness, water absorption, and thickness swelling of a bagasse fiber/polypropylene composite were evaluated. Brown- (Coniophora puteana) and white-rot (Trametes versicolor) fungal treatments were applied for 8, 12, and 16 weeks according to BS 838:1961 with the kolle-flask method. The brown- and white-rotted, and control composite samples were immersed in distilled water at 2 h and 24 h to measure the water absorption and thickness swelling of samples according to the ASTM D 570-98 requirements. Results indicated that the both lowest (3.2%) and the highest (7.2%) weight loss were observed in the white-rotted composite samples for 8 and 16 weeks fungal exposure times, respectively. The highest hardness (77.6 Shore D) was noted in the control composite samples, and the lowest hardness (65.5 Shore D) was recorded in the white-rotted composite samples. The highest water absorption (10.5%) was observed in the brown-rotted composite samples for 8 weeks fungal exposure time and after 24 h immersion in distilled water, and the lowest (3.8%) was noted in the control composite samples after 2 h immersion in distilled water. The highest thickness swelling (6.3%) was observed in the control composite samples after 24 h immersion in distilled water, and the lowest thickness swelling (1.9%) was found in the white-rotted composite samples for 16 weeks fungal exposure time and after 2 h immersion in distilled water.

2007 ◽  
Vol 26 (1) ◽  
pp. 1-7 ◽  
Author(s):  
F.J. Fuentes Talavera ◽  
J.A. Silva Guzmán ◽  
H.G. Richter ◽  
R. Sanjuán Dueñas ◽  
J. Ramos Quirarte

2020 ◽  
Vol 4 (3) ◽  
pp. 609-614
Author(s):  
K. J. Lawal ◽  
A. Oluyege ◽  
T. S. Bola ◽  
K. S. Aina ◽  
B. C. Falemara ◽  
...  

This study investigated the dimensional stability and strength properties of plastic bonded composites produced from wood waste particles and polyethylene using extruder. The composites were produced from wood species such as such as: Triplochiton scleroxylon, Terminalia superba and Gmelina arborea at a mixing proportion of 60:40 (plastic/wood) on a weight by weight basis. Evaluation of properties was carried out in accordance with the American Standard Testing Methods of 570 and 790 to determine the dimensional stability and strength properties of the composites. The results of findings revealed that water absorption and thickness swelling of the wood composites ranged from 10.08% to 15.36% and 4.33% to 5.58% respectively after 24hours and 48hours immersion in water. Tensile strength also ranged between 29.4MPa and 45.6MPa. Composite board made from T. superba wood particles had the lowest significant water absorption (10.08%), thickness swelling (4.33%) and highest significant tensile strength (45.6MPa) compared to composites produced from G. arborea and T. scleroxylon wood particles. It was observed that high density wood species exhibit lower water intake, lower thickness swelling and higher tensile strength, while the contrary is the case for lower density wood species. In conclusion, the three tree species used for the study could be recommended for the production of wood composite like particle board, fibre board, wood cement boards and others.


2015 ◽  
Vol 1088 ◽  
pp. 407-410
Author(s):  
Rosane A.G. Battistelle ◽  
Barbara Stolte Bezerra ◽  
Ivaldo D. Valarelli ◽  
Luiz A. Melgaço N. Branco ◽  
Eduardo Chahud ◽  
...  

In this research the aim was produce and evaluate a plastic composite using recycled polypropylene (PP) and fibers from sugarcane bagasse residues (SC), without the use of additives. This analysis was based on laboratorial tests for physical and mechanical characterization, according to the standards ASTM D256-00, D638-101 and D570-98 were analyzed: water absorption, thickness swelling, impact resistance, tensile strength and its correspondent deformation. For comparison it was elaborated three different compositions: 100% PP; 80% PP+20%SC; 70%PP+30%SC. The results indicate a positive correlation with the content of fiber and water absorption and thickness swelling. In the tension tests, the composites with fibers increase the value of resistance for physical efforts, bringing advantages as durability and integrity of the material, showing a viability of the composites.


BioResources ◽  
2011 ◽  
Vol 6 (1) ◽  
pp. 841-852
Author(s):  
Afshin Tavassoli Farsheh ◽  
Mohammad Talaeipour ◽  
Amir Homan Hemmasi ◽  
Habib Khademieslam ◽  
Ismaeil Ghasemi

Recently, the use of nanoparticles in Wood Plastic Composites (WPCs) has been considered by researchers. In this study, Multi-Walled Carbon Nanotubes (MWCNTs) were compounded with PVC, wood-flour, and foaming agent in an internal mixer. The wood flour amount was constant at 40 phr. For CNT and chemical foaming agent , different levels of 0, 1, 2 phr and 0, 3, 6 phr were considered respectively. The samples were foamed via batch process using a compression molding machine at 180°C. Morphology, density, water absorption, thickness swelling, and tensile properties of foamed composites were evaluated as a function of CNT and chemical foaming agent contents. The experimental results indicated that in the presence of CNT, cell density increased and cell size decreased. Density of the foamed composites was not affected by chemical foaming agent contents. Water absorption and thickness swelling of samples were decreased as compared with wood plastic composite without CNTs. Also, the maximum tensile strength and modulus were increased by up to 20% and 23% respectively.


2019 ◽  
pp. 089270571988998
Author(s):  
Chainarong Srivabut ◽  
Thanate Ratanawilai ◽  
Salim Hiziroglu

Mixture design method of experiments was used to determine the compositions of wood-plastic composite samples manufactured from recycled polypropylene (rPP), rubberwood flour (RWF), and calcium carbonate (CC). Factors were determined the mixture compositions rPP, RWF, CC, maleic anhydride-grafted polypropylene (MAPP), ultraviolet (UV) stabilizer, and lubricant (Lub) on properties of the samples, namely tension, compression, surface roughness, water absorption (WA), thickness swelling (TS), and thermogravimetric analysis (TGA). The specimens were produced by extrusion and compression molding methods. The analysis of variance and response surface methodology were employed for the analysis and optimization of the compositions. Optimal composition for overall response was 51.8 wt% rPP, 35.9 wt% RWF, 7.2 wt% CC, 3.9 wt% MAPP, 0.2 wt% UV stabilizer, and 1.0 wt% Lub with desirability score combining their output value of 0.757. The addition of CC content increased the mechanical properties but decreased the WA and TS. A high RWF content increased WA and TS with longer immersion times. The TGA of composites mainly depends on the chemical components of RWF and rPP types. The scanning electron microscope morphology in the composites with different amount of CC increased their densities due to good dispersion of CC as filler and good contact between the RWF reinforcement and rPP matrix.


2013 ◽  
Vol 20 (4) ◽  
pp. 351-357 ◽  
Author(s):  
Behzad Kord ◽  
Seyyed Khalil Hosseinihashemi ◽  
Mehdi Modirzare

AbstractIn this study, the effect of fungal decay on the long-term water absorption of bagasse fiber/polypropylene composites at different exposure times was studied. For this purpose, the blend composites were prepared through the melt mixing of bagasse fiber with polypropylene at 40:60% weight ratios, with 2% coupling agent for all formulations. Then, the samples were exposed to brown-rot (Coniophora puteana) and white-rot (Trametes versicolor) fungal treatments for 8, 12 and 16 weeks with the Kolle flask method. The long-term water absorptions of samples were evaluated by immersing them in water at room temperature for several weeks, and water diffusion coefficients were also calculated by evaluating the water absorption isotherms. Also, the morphology of composites was characterized using scanning electron microscopy (SEM). The results showed that the water absorption of samples was actually much higher after both types of rotting and was significantly higher than that of control samples. Also, the water absorption of white-rotted samples was higher than that of brown-rotted and control samples for all weeks of fungal exposure times. In addition, the control sample and composite after 16 weeks of exposure to white-rot fungi exhibited the lowest and highest water diffusion coefficients, respectively. The mechanism of water absorption of samples against fungal decay at different exposure times followed the kinetics of a Fickian diffusion process. Furthermore, the SEM micrographs showed that the extent of degradation increased with increasing exposure time to fungus.


2014 ◽  
Vol 1051 ◽  
pp. 242-249
Author(s):  
Marko Hyvärinen ◽  
Juho Paajanen ◽  
Timo Kärki

Outdoor applications of wood-plastic composites (WPCs) have raised question about the durability of such materials. WPCs are vulnerable to weathering factors such as UV radiation, moisture and freeze-thaw action. Weathering can cause discoloration, chalking, dimensional changes and loss of mechanical properties.This comparative study examines the effects of increased moisture content and artificial weathering on the properties of wood-plastic composites. Five commercial wood-plastic composite products from five different manufacturers were chosen and their water absorption, thickness swelling, impact strength and resistance to artificial weathering analyzed. An in-house manufactured wood-polypropylene composite with carbon black pigment was used as a reference product. In addition to quantitative investigation of material properties, the measured values were also compared with the values ​​reported by the manufacturers.The composite samples were exposed to accelerated weathering in a xenon weathering chamber for 500 hours. The color change was estimated by spectrophotometer method. The weathering resulted in no significant color fading of the composites. After weathering, the general trend was a minor decrease in impact strength. Also the water absorption and thickness swelling of commercial WPC products remained on a low level.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2154
Author(s):  
Amir Hussain Idrisi ◽  
Abdel-Hamid I. Mourad ◽  
Muhammad M. Sherif

This paper presents a long-term experimental investigation of E-glass/epoxy composites’ durability exposed to seawater at different temperatures. The thermoset composite samples were exposed to 23 °C, 45 °C and 65 °C seawater for a prolonged exposure time of 11 years. The mechanical performance as a function of exposure time was evaluated and a strength-based technique was used to assess the durability of the composites. The experimental results revealed that the tensile strength of E-glass/epoxy composite was reduced by 8.2%, 29.7%, and 54.4% after immersion in seawater for 11 years at 23 °C, 45 °C, and 65 °C, respectively. The prolonged immersion in seawater resulted in the plasticization and swelling in the composite. This accelerated the rate of debonding between the fibers and matrix. The failure analysis was conducted to investigate the failure mode of the samples. SEM micrographs illustrated a correlation between the fiber/matrix debonding, potholing, fiber pull-out, river line marks and matrix cracking with deterioration in the tensile characteristics of the thermoset composite.


2018 ◽  
Vol 42 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Evelyn Hoffmamm Martins ◽  
Alan Pereira Vilela ◽  
Rafael Farinassi Mendes ◽  
Lourival Marin Mendes ◽  
Lívia Elisabeth Vasconcellos de Siqueira Brandão Vaz ◽  
...  

ABSTRACT Brazil is the second largest soybean producer in the world, with a yield of around 96.2 million tons per crop. This high yield leads to a great amount of waste resulting from soybean cultivation, which can reach approximately 41 million tons of waste per year. This material has lignocellulosic properties, which may enable its use as a raw material for particleboard production. Therefore, the objective of this study was to evaluate the use of soybean pods in particleboard production. For particleboard manufacture, wood of the hybrid Eucalyptus urophylla and Eucalyptus grandis was used, added with soybean pods, at proportions of 0%, 25%, 50%, 75% and 100%. For particleboard evaluation, a completely randomized design was used, with five treatments and three replicates, using linear regression and the Scott-Knott test at 5% significance for comparison among the different treatments. The properties apparent density, compaction ratio, water absorption after 2 and 24 hours, thickness swelling after 2 and 24 hours in water immersion, internal bonding, modulus of rupture and modulus of elasticity in bending properties were evaluated. The ratio soybean pod waste and eucalyptus particles in the panels led to an increase in water absorption values and thickness swelling, in addition to a decrease in mechanical properties. The production of panels with approximately 23% soybean pods is feasible.


Sign in / Sign up

Export Citation Format

Share Document