scholarly journals Effect of Ground Tire Rubber on Mechanical Properties of Low Density Polyethylene

Author(s):  
Mushtaq Asim ◽  
Khan Raza Muhammad ◽  
Ali Zaeem Uddin

This research explores the effect of ground tire rubber (GTR) on the mechanical properties of LDPE. This thermoplastic-elastomer blend sets the composition of ground tire rubber and low-density polyethylene (LDPE/GTR). The blend was prepared in different proportions and was processed in a compression molding machine. The optimum operating conditions of the blend set to be 220℃ temperature and pressure varied from 150-200 bars. Different parts per hundred rubber (phr) samples were obtained under these conditions, including 1 phr, 2 phr, 3 phr, 4 phr, and 5 phr. After that, the mechanical properties of the blend were examined concerning various compositions. Different testing methods were used to determine the mechanical properties of the thermoplastic-elastomer blend, which include tensile strength, flexural strength, and Izod impact. The results obtained from these tests show that tensile strength and modulus decreases by increasing the rubber content. However, impact strength and percentage elongation increase by increasing the rubber content. This enhancement in impact and percentage elongation may be suitable for the applications in gymnasium mat and automobile industry.

Author(s):  
Lóránt Kiss ◽  
Dániel Ábel Simon ◽  
Roland Petrény ◽  
Dávid Kocsis ◽  
Tamás Bárány ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 44-49
Author(s):  
Ibiyemi A. Idowu ◽  
Olutosin O. Ilori

The study examined the effect of fillers on the mechanical properties of the recycled low density polyethylene composites under weathered condition with a view of managing the generation and disposal of plastic wastes. Discarded pure water sachets and fillers (glass and talc) were sourced and recycled. Recycled low density polyethylene (RLDPE) and preparation of RLDPE/glass, RLDPE/talc and RLDPE/glass/talc composites were carried out using a furnace at compositions of 0 – 40% in steps of 10% by weight. The mixtures were poured into hand-laid mould. The samples produced were exposed to sunlight for eight (8) weeks and their mechanical properties were studied. The results of mechanical tests revealed that tensile strength decreased with increasing filler loading while impact strength and hardness property increased marginally and considerably with increasing filler loading for all the composites respectively. The study concluded that glass and talc were able to reinforce recycled low density polyethylene under weathered condition. Keywords: Recycled Low Density Polyethylene (RLDPE); Fillers; Glass, Talc; Weathering condition; Sunlight; and Mechanical properties; Tensile strength, Impact and hardness


2011 ◽  
Vol 43 (6) ◽  
pp. 543-558 ◽  
Author(s):  
Z. Chen ◽  
S. Chen ◽  
J. Zhang

The surfactant, sodium dodecylbenzenesulfonate (NaDDBS) and coupling agents, γ-aminopropyltriethoxy sliane (KH550) and isopropyl dioleic(dioctylphosphate) titanate (NDZ101) were used to treat multiwalled carbon nanotubes in this work. The effects of surface modification of multiwalled carbon nanotubes on crystallization behavior, mechanical properties, and electrical properties of low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites were studied. The results showed that NaDDBS, KH550, and NDZ101 had a favorable effect of improving the dispersion of multiwalled carbon nanotubes, but it cannot improve the interfacial interactionbetween multiwalled carbon nanotubes and the matrix. The improvement in dispersion favored the crystallization behavior and mechanical properties. Modified multiwalled carbon nanotubes had a better acceleration nucleation effect than raw multiwalled carbon nanotubes on low density polyethylene/polyolefin elastomer blends at low content (≤1 wt%). The tensile strength of low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites with modified multiwalled carbon nanotubes increased with lower multiwalled carbon nanotubes content (≤1 wt%), and KH550 and NDZ101 led low density polyethylene/polyolefin elastomer/multiwalled carbon nanotubes composites to possess a higher tensile strength than that of NaDDBS with 1 wt% content. NaDDBS, KH550, and NDZ101 had a minor influence on the dielectric properties of the composites and even caused a decrease in the dielectric loss of composites with 10 wt% multiwalled carbon nanotubes content.


2019 ◽  
Vol 9 (24) ◽  
pp. 5430 ◽  
Author(s):  
Ramin Shaker ◽  
Denis Rodrigue

In this study, regenerated and nonregenerated off-the-road (OTR) ground tire rubber (GTR) was blended with low-density polyethylene (LDPE) to produce thermoplastic elastomers (TPE) by rotational molding. In particular, blending was performed by two different methods: melt blending (extrusion) and dry blending (high shear mixer). Then, different GTR concentrations (0, 20, 35, and 50 wt %) were used to determine the effect of rubber content on the processability and properties of the rotomolded compounds. From the samples produced, a complete morphological (optical and scanning electron microscopy), physical (density and hardness), and mechanical (tension, flexion, and impact) characterization was performed. The results showed that increasing the rubber content decreased the mechanical rigidity and strength but increased the elasticity and ductility. Finally, although melt blending led to slightly better properties than dry blending, the latter is more interesting to limit possible material degradation (mechanical, thermal, and oxidative), while reducing processing cost and time.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Jong Won Kim ◽  
Joon Seok Lee

Polyethylene is one of the most commonly used polymer materials. Even though linear low density polyethylene (LLDPE) has better mechanical properties than other kinds of polyethylene, it is not used as a textile material because of its plastic behavior that is easy to break at the die during melt spinning. In this study, LLDPE fibers were successfully produced with a new approach using a dry-jet wet spinning and a heat drawing process. The fibers were filled with carbon nanotubes (CNTs) to improve the strength and reduce plastic deformation. The crystallinity, degree of orientation, mechanical properties (strength to yield, strength to break, elongation at break, and initial modulus), electrical conductivity, and thermal properties of LLDPE fibers were studied. The results show that the addition of CNTs improved the tensile strength and the degree of crystallinity. The heat drawing process resulted in a significant increase in the tensile strength and the orientation of the CNTs and polymer chains. In addition, this study demonstrates that the heat drawing process effectively decreases the plastic deformation of LLDPE.


2012 ◽  
Vol 200 ◽  
pp. 347-350
Author(s):  
Wei He ◽  
Qing Hong Fang ◽  
Wei Lin ◽  
A.S. Luyt ◽  
Tie Jun Ge

Anti-fog films of low density polyethylene (LDPE) modified with micrometer diatomite were prepared by a process of blow molding. Through examination of antifogging property of the film added the anti-fog agents, the modification effectiveness of inorganic micrometer diatomite and the influence of different treating agents were studied with Fourier transform infrared spectrometer (FTIR), mechanical properties, and antifogging performances. The results indicate that the anti-fog property of the film can be improved by premixing inorganic micrometer diatomite with the anti-fog agents; the film modified by inorganic micrometer diatomite added surface treatment agent has obviously effectiveness anti-fog properties than that the films modified only by the anti-fog agents. Addition of polyacrylamide can make the anti-fog durability of the films modified by inorganic micrometer diatomite be further prolonged. It was observed that the tensile strength does not show any decrease, however, elongation at break show a massive decreased.


2020 ◽  
Vol 40 (2) ◽  
pp. 181-191 ◽  
Author(s):  
Parisa Kamalian ◽  
Saied Nouri Khorasani ◽  
Amir Abdolmaleki ◽  
Mehdi Karevan ◽  
Shahla Khalili ◽  
...  

AbstractIn this research, the photocatalytic degradation performance in a commercial low-density polyethylene (LDPE) film was investigated in the presence of zinc oxide (ZnO) nanoparticles grafted with two amounts of polyacrylamide. Fourier-transform infrared spectroscopy (FTIR) besides thermogravimetric analysis (TGA) test results reinforced the successful grafting of polyacrylamide to the extent of 10 and 39 wt.% on the ZnO nanoparticles. The photocatalytic degradation of the films under ultraviolet (UV) radiation was evaluated by characterizing the mechanical properties, weight loss, and morphology. The UV absorption and emission for ZnO nanoparticles were increased after grafting with 10% polyacrylamide. The tensile strength of the nanocomposite films increased with the incorporation of nanoparticles. The presence of ZnO nanoparticles in LDPE films increased the rate of degradation after 200 h of irradiation. The polyacrylamide grafting improved the dispersion of ZnO particles in LDPE matrix, whereas the increase of grafting extent from 10 to 39 wt.% reduced the photocatalytic performance of ZnO nanoparticles.


2011 ◽  
Vol 3 (2) ◽  
pp. 249-259 ◽  
Author(s):  
M. J. Miah ◽  
M. A. Khan ◽  
R. A. Khan

Jute fiber reinforced low density polyethylene (LDPE) composites (10-30% fiber, by weight) are prepared by compression molding. Tensile strength (TS), bending strength (BS) and bending elongation (BE) of the composites are increased over LDPE.  Jute fiber is treated with monomer (2-hydroxyethyl methacrylate, HEMA) along with two different initiators in methanol solvent. Jute fibers are soaked with 10% HEMA+2% Irgacure-184 (F1-Formulation) and 3% HEMA+2% benzol peroxide (F2-Formulation) and dried at 80ºC for 2 hours then composites are fabricated by compression molding. It is found that due to chemical treatment of the jute fibers, a significant improvement of the mechanical properties of the composites are happened (56% TS, 30% BS and 35% BE) compared to the LDPE. 3%HEMA+2% benzol peroxide treated jute composites found better mechanical properties compared to 10%HEMA+2% Irgacure-184 treated jute composites. Dielectric constant and loss tangent of the composites are increased with increasing temperature up to a transition temperature and then decreased, finally reached to plateau. Scanning Electron Microscopic (SEM) analysis of the fracture side of the composites are carried out and supported better fiber-matrix adhesion due to the chemical treatment.Keywords: Jute fiber; Polyethylene; Composite; Tensile strength; Bending strength; Dielectric constant; Loss tangent.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi:10.3329/jsr.v3i2.6763               J. Sci. Res. 3 (2), 249-259 (2011)


2014 ◽  
Vol 1025-1026 ◽  
pp. 265-269 ◽  
Author(s):  
Jan Navratil ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
David Manas ◽  
Martin Bednarik ◽  
...  

This research paper deals with utilization of recycled irradiated high-density polyethylene (HDPEx). Grit prepared of irradiated HDPEx was used as a filler into virgin low-density polyethylene (LDPE). Concentrations from 10 to 60 % were made and their influence on mechanical properties was investigated. Tensile test at ambient and elevated temperature was used to describe mechanical properties of resulting blends. Results show that there is an upward trend of elastic modulus and ultimate tensile strength and downward trend of nominal strain at ambient temperature. Similar findings were observed at elevated temperature, which might suggest possible utilization of such modified thermoplastic materials. However other material properties have to be tested to make final conclusion.


2018 ◽  
Vol 37 (2) ◽  
pp. 55-68 ◽  
Author(s):  
Yao Dou ◽  
Denis Rodrigue

In this work, a simple method is presented to produce ground tire rubber (GTR) -linear low density polyethylene (LLDPE) compounds and foams via rotational molding. In particular, different GTR concentrations (0 to 50% wt.) were dry-blended with different chemical blowing agent (CBA) content (0 to 1% wt.). From the samples produced, a complete set of characterization was performed in terms of mechanical properties (tensile, flexural and impact), density and morphological properties. The results show that increasing GTR content or CBA content not only decreased both tensile and flexural moduli, but decreased ultimate strength and strain at break. As expected, increasing blowing agent content decreased density. Besides, with respect to impact strength, the value of all samples decreased with the addition of GTR or CBA except for 0.2% wt. CBA of GTR-LLDPE composite foams, which nearly remain at the same level.


Sign in / Sign up

Export Citation Format

Share Document