scholarly journals The analysis for alteration in starch biosynthesis metabolism in a japonica rice grain mutant which does not accumulate starch

2018 ◽  
Vol 7 (5) ◽  
Author(s):  
Chunhai Shi ◽  
Weidong Xu ◽  
Zhenzhen Cao ◽  
Fangmin Cheng ◽  
Jianguo Wu
Agronomy ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 423
Author(s):  
Yaolong Yang ◽  
Xin Xu ◽  
Mengchen Zhang ◽  
Qun Xu ◽  
Yue Feng ◽  
...  

The japonica rice in Northeast China is famous because of its high quality. Eating and cooking qualities (ECQs) are the most important factors that determine cooked rice quality. However, the genetic basis of ECQ of japonica varieties in Northeast China needs further study. In this study, 200 japonica varieties that are widely distributed in Northeast China were collected to evaluate the physicochemical indices of grain ECQs. The distribution of each trait was concentrated without large variations. Correlation analysis indicated that gel consistency (GC) had a significantly negative correlation with gelatinization temperature (GT). By integrating various analyses including kinship calculation, principal component analysis (PCA), linkage disequilibrium (LD) analysis, and original parent investigation, we found that the japonica varieties in Northeast China exhibited a narrow genetic basis. An association study for grain ECQs was performed and eight quantitative trait loci (QTLs) were detected. ALK was the major locus that regulated GT and also significantly affecting GC. Through the linkage disequilibrium (LD) and expression pattern analysis, one possible candidate gene (LOC_Os02g29980) was predicted and required further research for validation. Additionally, a different allele of Wx was identified in the variety CH4126, and ALK was not fixed in these japonica varieties. These results further elucidate the genetic basis of ECQs of japonica varieties in Northeast China and provide local breeders some assistance for improving ECQs of rice grain in rice breeding.


2014 ◽  
Vol 37 (3) ◽  
pp. 177-184 ◽  
Author(s):  
Masatsugu Tamura ◽  
Takumi Nagai ◽  
Yasuyuki Hidaka ◽  
Takahiro Noda ◽  
Mio Yokoe ◽  
...  
Keyword(s):  

Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 106 ◽  
Author(s):  
Ke Zhang ◽  
Xiaojun Liu ◽  
Syed Tahir Ata-Ul-Karim ◽  
Jingshan Lu ◽  
Brian Krienke ◽  
...  

Accurate estimation of the nitrogen (N) spatial distribution of rice (Oryza sativa L.) is imperative when it is sought to maintain regional and global carbon balances. We systematically evaluated the normalized differences of the soil and plant analysis development (SPAD) index (the normalized difference SPAD indexes, NDSIs) between the upper (the first and second leaves from the top), and lower (the third and fourth leaves from the top) leaves of Japonica rice. Four multi-location, multi-N rate (0–390 kg ha−1) field experiments were conducted using seven Japonica rice cultivars (9915, 27123, Wuxiangjing14, Wunyunjing19, Wunyunjing24, Liangyou9, and Yongyou8). Growth analyses were performed at different growth stages ranging from tillering (TI) to the ripening period (RP). We measured leaf N concentration (LNC), the N nutrition index (NNI), the NDSI, and rice grain yield at maturity. The relationships among the NDSI, LNC, and NNI at different growth stages showed that the NDSI values of the third and fourth fully expanded leaves more reliably reflected the N nutritional status than those of the first and second fully expanded leaves (LNC: NDSIL3,4, R2 > 0.81; NDSIothers, 0.77 > R2 > 0.06; NNI: NDSIL3,4, R2 > 0.83; NDSIothers, 0.76 > R2 > 0.07; all p < 0.01). Two new diagnostic models based on the NDSIL3,4 (from the tillering to the ripening period) can be used for effective diagnosis of the LNC and NNI, which exhibited reasonable distributions of residuals (LNC: relative root mean square error (RRMSE) = 0.0683; NNI: RRMSE = 0.0688; p < 0.01). The relationship between grain yield, predicted yield, and NDSIL3,4 were established during critical growth stages (from the stem elongation to the heading stages; R2 = 0.53, p < 0.01, RRMSE = 0.106). An NDSIL3,4 high-yield change curve was drawn to describe critical NDSIL3,4 values for a high-yield target (10.28 t ha−1). Furthermore, dynamic-critical curve models based on the NDSIL3,4 allowed a precise description of rice N status, facilitating the timing of fertilization decisions to optimize yields in the intensive rice cropping systems of eastern China.


Genome ◽  
2013 ◽  
Vol 56 (4) ◽  
pp. 227-232 ◽  
Author(s):  
Yong-Feng Yan ◽  
Puji Lestari ◽  
Kyu-Jong Lee ◽  
Moon Young Kim ◽  
Suk-Ha Lee ◽  
...  

Cadmium (Cd) poses a serious risk to human health due to its biological concentration through the food chain. To date, information on genetic and molecular mechanisms of Cd accumulation and distribution in rice remains to be elucidated. We developed an independent F7 RIL population derived from a cross between two japonica cultivars with contrasting Cd levels, ‘Suwon490’ and ‘SNU-SG1’, for QTLs identification of Cd accumulation and distribution. ‘Suwon490’ accumulated five times higher Cd in grain than ‘SNU-SG1’. Large genotypic variations in Cd accumulation (17-fold) and concentration (12-fold) in grain were found among RILs. Significant positive correlations between Cd accumulation in grain with shoot Cd accumulation and shoot to grain distribution ratio of Cd signify that both shoot Cd accumulation and shoot to grain Cd distribution regulate Cd accumulation in japonica rice grain. A total of five main effect QTLs (scc10 for shoot Cd accumulation; gcc3, gcc9, gcc11 for grain Cd accumulation; and sgr5 for shoot to grain distribution ratio) were detected in chromosomes 10, 3, 9, 11, and 5, respectively. Of these, the novel potential QTL sgr5 has the strongest effect on shoot to grain Cd distribution. In addition, two digenic epistatic interaction QTLs were identified, suggesting the substantial contribution of nonallelic genes in genetic control of these Cd-related traits.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 803 ◽  
Author(s):  
Shuvobrata Majumder ◽  
Karabi Datta ◽  
Swapan Kumar Datta

One out of three humans suffer from micronutrient deficiencies called “hidden hunger”. Underprivileged people, including preschool children and women, suffer most from deficiency diseases and other health-related issues. Rice (Oryza sativa), a staple food, is their source of nutrients, contributing up to 70% of daily calories for more than half of the world’s population. Solving “hidden hunger” through rice biofortification would be a sustainable approach for those people who mainly consume rice and have limited access to diversified food. White milled rice grains lose essential nutrients through polishing. Therefore, seed-specific higher accumulation of essential nutrients is a necessity. Through the method of biofortification (via genetic engineering/molecular breeding), significant increases in iron and zinc with other essential minerals and provitamin-A (β-carotene) was achieved in rice grain. Many indica and japonica rice cultivars have been biofortified worldwide, being popularly known as ‘high iron rice’, ‘low phytate rice’, ‘high zinc rice’, and ‘high carotenoid rice’ (golden rice) varieties. Market availability of such varieties could reduce “hidden hunger”, and a large population of the world could be cured from iron deficiency anemia (IDA), zinc deficiency, and vitamin-A deficiency (VAD). In this review, different approaches of rice biofortification with their outcomes have been elaborated and discussed. Future strategies of nutrition improvement using genome editing (CRISPR/Cas9) and the need of policy support have been highlighted.


Plants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Chiara Biselli ◽  
Andrea Volante ◽  
Francesca Desiderio ◽  
Alessandro Tondelli ◽  
Alberto Gianinetti ◽  
...  

Rice quality is mainly related to the following two starch components, apparent amylose content (AAC) and resistant starch (RS). The former affects grain cooking properties, while RS acts as a prebiotic. In the present study, a Genome Wide Association Scan (GWAS) was performed using 115 rice japonica accessions, including tropical and temperate genotypes, with the purpose of expanding the knowledge of the genetic bases affecting RS and AAC. High phenotypic variation was recorded for the two traits, which positively correlated. Moreover, both the parameters correlated with seed length (positive correlation) and seed width (negative correlation). A correlational selection according to human preferences has been hypothesized for the two starch traits and grain size. In addition, human selection has been proposed as the causal agent even for the different phenotypes related to starch and grain size showed by the tropical and temperate japonica accessions utilized in this study. The present GWAS led to the identification of 11 associations for RS on seven chromosomes and five associations for AAC on chromosome 6. Candidate genes and co-positional relationships with quantitative trait loci (QTLs) previously identified as affecting RS and AAC were identified for 6 associations. The candidate genes and the new RS- and/or AAC-associated regions detected provide valuable sources for future functional characterizations and for breeding programs aimed at improving rice grain quality.


Plant Science ◽  
2020 ◽  
Vol 294 ◽  
pp. 110443 ◽  
Author(s):  
Qian Zhao ◽  
Yu Ye ◽  
Zhanyu Han ◽  
Lujian Zhou ◽  
Xianyue Guan ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1041
Author(s):  
Dong Xu ◽  
Ying Zhu ◽  
Haibin Zhu ◽  
Qun Hu ◽  
Guodong Liu ◽  
...  

A mixture of controlled-release nitrogen (N) fertilizers (CRNFs) and conventional urea (CU) as a single application of basal fertilizer could simplify fertilization in rice cultivation from the traditional and more labor-intensive fertilization strategy of multiple applications of nitrogen. However, the reported benefits of this combined approach in increasing rice yield have varied substantially for various reasons, including that various types of rice are characterized by different N requirements to obtain high yield. In this study, two late japonica rice cultivars, Jia58 (J58) and Jia67(J67), were used to determine the best combination of one of two short-acting CRNFs (release periods were 40 and 60 days) and one of three long-acting CRNFs (release periods were 80, 100 and 120 days) to apply with the CU as a one-time application of basal fertilizer. Six combinations of CRNFs were established based on their release periods: A1, 40 + 80 days; A2, 40 + 100 days; A3, 40 + 120 days; B1, 60 + 80 days; B2, 60 + 100 days; and B3, 60 + 120 days. CU applied split at basal, tillering and panicle differentiation stages, respectively as control (CK). The effects of the different treatment combinations of CRNFs on late-rice grain yield, N accumulation and N-use efficiency in a two-year field experiment were determined. Results showed that, the A2 treatment achieved the same yield as that of CK, and yield of the B2 treatment exceeded the yield of CK. Yield of J58 applied with B2 was 7.35% higher in 2018 and 7.40% higher in 2019 than that of the corresponding yield of CK; yield of J67 applied with B2 was 6.05% higher in 2018 and 6.87% higher in 2019 than that of CK. Compared with other CRNF treatments, the release of N from A2 and B2 was most synchronized with nitrogen uptake by the two cultivars, which indicates that fertilizer combination completely met the nitrogen demands during each growth stage of rice. Rice of the A2 and B2 treatments had higher N accumulation, higher aboveground biomass accumulation and LAI (leaf area index) at the heading and maturity stages and higher photosynthetic activity than those of other CRNF treatments. In conclusion, for late japonica rice in China, the application of the A2 and B2 treatments as optimal type of CRNF can achieve labor saving and yield increasing simultaneously in rice production.


Sign in / Sign up

Export Citation Format

Share Document