scholarly journals Corrective effects of benzodiazepine derivative – diazepinone on purine and lipid metabolism in the liver of rats with Parkinson’s disease

2021 ◽  
Vol 67 (4) ◽  
pp. 64-75
Author(s):  
l.Ya. Shtanova ◽  
◽  
P.I. Yanchuk ◽  
S.P. Vesеlsky ◽  
O.V. Tsymbalyuk ◽  
...  

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra. The cause of PD is not fully understood, and effective treatments still do not exist. It is believed that oxidative stress, mitochondrial dysfunction, and impaired lipid metabolism may underlie the pathogenesis of PD. Bile contains the breakdown products of various compounds that form in hepatocytes. This study aimed to evaluate the effect of a new benzodiazepine derivative - diazepinone (DP) on purine and lipid metabolism in the liver of rats with PD caused by rotenone (ROT) by studying the composition of bile. The concentration of ATP, ADP, AMP, xanthine, hypoxanthine, phospholipids (PL), cholesterol (CHOL), cholesterol esters (ECHOL), free fatty acids (FFA), and triglycerides (TG) was quantified in bile samples by thin-layer chromatography. Our findings suggested that the ratio of AMP/ ATP in bile increased almost threefold under the influence of ROT, and with DP, it exceeded the norm by only 1.6 times. ROT also increased the content of xanthine and hypoxanthine by 28.6% and 66.7%, respectively. DP did not affect the increased xanthine content relative to control but significantly reduced the level of hypoxanthine (up to 22.2%, above normal). In addition, ROT reduced the content of bile PL, CHOL, ECHOL, TG by 23.9%, 38.6%, 47.5%, 39.2 %, respectively. Under the influence of the DP, all the above indicators returned to the level of control. Thus, diazepinone improves both the metabolism of purines and lipids in the liver of rats with ROT-simulated PD. This drug may become a therapeutic agent for treating PD and possibly other neurodegenerative diseases in the future.

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Shin Hisahara ◽  
Shun Shimohama

Parkinson's disease (PD) is a common progressive neurodegenerative disorder. The major pathological hallmarks of PD are the selective loss of nigrostriatal dopaminergic neurons and the presence of intraneuronal aggregates termed Lewy bodies (LBs), but the pathophysiological mechanisms are not fully understood. Epidemiologically, environmental neurotoxins such as pesticides are promising candidates for causative factors of PD. Oxidative stress and mitochondrial dysfunction induced by these toxins could contribute to the progression of PD. While most cases of PD are sporadic, specific mutations in genes that cause familial forms of PD have led to provide new insights into its pathogenesis. This paper focuses on animal models of both toxin-induced and genetically determined PD that have provided significant insight for understanding this disease. We also discuss the validity, benefits, and limitations of representative models.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Thi Thanh Nguyen ◽  
My Dung Vuu ◽  
Man Anh Huynh ◽  
Masamitsu Yamaguchi ◽  
Linh Thuoc Tran ◽  
...  

The relationship between oxidative stress and neurodegenerative diseases has been extensively examined, and antioxidants are considered to be a promising approach for decelerating disease progression. Parkinson’s disease (PD) is a common neurodegenerative disorder and affects 1% of the population over 60 years of age. A complex combination of genetic and environmental factors contributes to the pathogenesis of PD. However, since the onset mechanisms of PD have not yet been elucidated in detail, difficulties are associated with developing effective treatments. Curcumin has been reported to have neuroprotective properties in PD models induced by neurotoxins or genetic factors such as α-synuclein, PINK1, DJ-1, and LRRK2. In the present study, we investigated the effects of curcumin in a novel Drosophila model of PD with knockdown of dUCH, a homolog of human UCH-L1. We found that dopaminergic neuron-specific knockdown of dUCH caused impaired movement and the loss of dopaminergic neurons. Furthermore, the knockdown of dUCH induced oxidative stress while curcumin decreased the ROS level induced by this knockdown. In addition, dUCH knockdown flies treated with curcumin had improved locomotive abilities and less severe neurodegeneration. Taken together, with studies on other PD models, these results strongly suggest that treatments with curcumin are an appropriate therapy for PD related to oxidative stress.


Author(s):  
Karthigadevi. K ◽  
Anbazhagan. S ◽  
Jajjara Gopi Sudheer Kumar ◽  
Kavimani. S

Parkinson’s disease is the major neurodegenerative disorder, which is due to the loss of dopaminergic neurons in the brain and results in bradykinesia, rigidity, tremor and instable posture. Oxidative stress, Inflammation, Apoptosis has been implicated in the molecular etiopathogenesis of Parkinson disease. In the present study, Nebivolol, a Cardioselective ?-blocking agent which is also reported as an antioxidant, anti-inflammation, anticonvulsant, inhibition of apoptosis and protective effects on gastric ulcer. Hence, nebivolol has been tested for its antiparkinson activity against 1-Methyl, 4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) induced model of Parkinson disease in mice. From this study, the result shown that the nebivolol exerts its beneficial effect against MPTP induced Parkinson’s disease by virtue of its antioxidative, anti-inflammatory and by increases the Dopamine levels in the brain.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Suchita Ganesan ◽  
Venkatachalam Deepa Parvathi

Abstract Background Parkinson’s disease (PD) is a multifactorial neurodegenerative disorder marked by the death of nigrostriatal dopaminergic neurons in response to the compounding effects of oxidative stress, mitochondrial dysfunction and protein aggregation. Transgenic Drosophila models have been used extensively to decipher the underlying genetic interactions that exacerbate neural health in PD. Autosomal recessive forms of the disease have been linked to mutations in the serine/threonine kinase PINK1(PTEN-Induced Putative Kinase 1) and E3 ligase Parkin, which function in an axis that is conserved in flies. This review aims to probe the current understanding of PD pathogenesis via the PINK1/Parkin axis while underscoring the importance of several molecular and pharmacologic rescues brought to light through studies in Drosophila. Main body Mutations in PINK1 and Parkin have been shown to affect the axonal transport of mitochondria within dopaminergic neurons and perturb the balance between mitochondrial fusion/fission resulting in abnormal mitochondrial morphology. As per studies in flies, ectopic expression of Fwd kinase and Atg-1 to promote fission and mitophagy while suppressing fusion via MUL1 E3 ligase may aid to halt mitochondrial aggregation and prolong the survival of dopaminergic neurons. Furthermore, upregulation of Hsp70/Hsp90 chaperone systems (Trap1, CHIP) to target misfolded mitochondrial respiratory complexes may help to preserve their bioenergetic capacity. Accumulation of reactive oxygen species as a consequence of respiratory complex dysfunction or antioxidant enzyme deficiency further escalates neural death by inducing apoptosis, lipid peroxidation and DNA damage. Fly studies have reported the induction of canonical Wnt signalling to enhance the activity of transcriptional co-activators (PGC1α, FOXO) which induce the expression of antioxidant enzymes. Enhancing the clearance of free radicals via uncoupling proteins (UCP4) has also been reported to ameliorate oxidative stress-induced cell death in PINK1/Parkin mutants. Conclusion While these novel mechanisms require validation through mammalian studies, they offer several explanations for the factors propagating dopaminergic death as well as promising insights into the therapeutic importance of transgenic fly models in PD.


Molecules ◽  
2019 ◽  
Vol 24 (11) ◽  
pp. 2182 ◽  
Author(s):  
Richard L. Jayaraj ◽  
Rami Beiram ◽  
Sheikh Azimullah ◽  
Mohamed Fizur Nagoor Meeran ◽  
Shreesh K. Ojha ◽  
...  

Parkinson’s disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug’s multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.


2017 ◽  
Vol 26 (4) ◽  
pp. 669-677 ◽  
Author(s):  
Enéas G. Ferrazoli ◽  
Héllio D.N. De Souza ◽  
Isis C. Nascimento ◽  
Ágatha Oliveira-Giacomelli ◽  
Telma T. Schwindt ◽  
...  

Parkinson's disease (PD) is a neurodegenerative disorder, characterized by the loss of dopaminergic neurons in the substantia nigra and their projections to the striatum. Several processes have been described as potential inducers of the dopaminergic neuron death, such as inflammation, oxidative stress, and mitochondrial dysfunction. However, the death of dopaminergic neurons seems to be multifactorial, and its cause remains unclear. ATP-activating purinergic receptors influence various physiological functions in the CNS, including neurotransmission. Purinergic signaling is also involved in pathological scenarios, where ATP is extensively released and promotes sustained purinergic P2X7 receptor (P2X7R) activation and consequent induction of cell death. This effect occurs, among other factors, by oxidative stress and during the inflammatory response. On the other hand, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is involved in energy metabolism and mitochondrial biogenesis. Expression and activity upregulation of this protein has been related with reduction of oxidative stress and neuroprotection. Therefore, P2X7R and PGC-1α are potential targets in the treatment of PD. Here hemiparkinsonism was induced by unilateral stereotactic injection of 6-OHDA in a rat model. After 7 days, the establishment of PD was confirmed and followed by treatment with the P2X7R antagonist Brilliant Blue G (BBG) or PGC-1α agonist fenofibrate. BBG, but not fenofibrate, reverted hemiparkinsonian behavior accompanied by an increase in tyrosine hydroxylase immunoreactivity in the substantia nigra. Our results suggest that the P2X7R may be a therapeutic target in Parkinson's disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ting Sun ◽  
Zhe-Xu Ding ◽  
Xin Luo ◽  
Qing-Shan Liu ◽  
Yong Cheng

Parkinson’s disease (PD) is a common and complex neurodegenerative disease; the pathogenesis of which is still uncertain. Exosomes, nanosized extracellular vesicles, have been suggested to participate in the pathogenesis of PD, but their role is unknown. Here, a metabolomic analysis of serum and brain exosomes showed differentially expressed metabolites between 1-Methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine hydrochloride- (MPTP-) induced PD mice and control mice, such as oxidized lipids, vitamins, and cholesterol. These metabolites were enriched in coenzyme, nicotinamide, and amino acid pathways related to PD, and they could be served as preclinical biomarkers. We further found that blood-derived exosomes from healthy volunteers alleviated impaired motor coordination in MPTP-treated mice. Results from immunohistochemistry and western blotting indicated that the loss of dopaminergic neurons in substantia nigra and striatum of PD model mice was rescued by the exosome treatment. The exosome treatment also restored the homeostasis of oxidative stress, neuroinflammation, and cell apoptosis in the model mice. These results suggest that exosomes are important mediators for PD pathogenesis, and exosomes are promising targets for the diagnosis and treatment of PD.


The neurodegenerative disorder is a prolonged persistence curse and effect on economic and physical challenges in an aging world. Parkinson has come in the second category of disability disorders and associated with progressive dopaminergic neuronal degeneration with severe motor complications. It is an observation that gradual disease progression causes 70% degeneration of striatal dopaminergic neurons. Globally there are around 7-10 million patients with Parkinson's disease, however, there are huge efforts for therapeutic improvement. According to studies, no single molecular pathway was pointed out as a single etiology to control disease progression due to a lack of targeted therapeutic strategies. Previously implemented symptomatic treatments include L-dopa (L-3,4-dihydroxyphenylalanine), deep brain stimulation, and the surgical insertion of a medical device. This leads to dyskinesia, dystonia and a higher risk of major surgical complications respectively. However, not all the above-mentioned therapies cannot regenerate the dopaminergic neurons in Parkinson’s disease patients. Recent advances in the field of cellular therapy have shown promising outcomes by differentiation of multipotent mesenchymal stem cells into dopaminergic neurons under the influence of a regenerative substance. In this review, we have discussed the differentiation of dopaminergic neurons by using different cell types that can be used as a cellular therapeutic approach for Parkinson’s disease. The information was collected through a comprehensive search using the keywords, “Parkinson Disease, Dopamine, Brain derived neurotrophic factor and neuron from reliable search engines, PubMed, Google Scholar and Medline reviews from the year 2010 to 2020.


2020 ◽  
Author(s):  
Brett Fulleylove-Krause ◽  
Samantha Sison ◽  
Allison Ebert

Abstract Objectives: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by the loss of dopaminergic neurons in the substantia nigra. Although the underlying mechanisms of dopaminergic neuron loss is not fully understood, evidence suggests mitochondrial malfunction as a key contributor to disease pathogenesis. We previously found that human PD patient stem cell-derived dopaminergic neurons exhibit reduced nicotinamide adenine dinucleotide (NAD+) levels and reduce activity of sirtuins, a group of NAD+-dependent deacetylase enzymes that participate in the regulation of mitochondrial function, energy production, and cell survival. Thus, here we tested whether treatment of PD stem cell-derived dopaminergic neurons with nicotinamide mononucleotide (NMN), an NAD+ precursor, could increase NAD+ levels and improve sirtuin activity. Results: We treated PD iPSC-derived dopaminergic neurons with NMN and found that NAD+ levels did increase. The deacetylase activity of sirtuin (SIRT) 2 was improved with NMN treatment, but NMN had no impact on deacetylase activity of SIRT 1 or 3. These results suggest that NMN can restore NAD+ levels and SIRT 2 activity, but that additional mechanisms are involved SIRT 1 and 3 dysregulation in PD dopaminergic neurons.


Sign in / Sign up

Export Citation Format

Share Document