scholarly journals DEVELOPMENT OF TECHNOLOGY AND CREATION OF TEST EQUIPMENT FOR PRESSURE WELDING OF HIGH-LOAD THIN-WALLED HETEROGENEOUS STEEL TUBULAR PARTS

2021 ◽  
Vol 17 (4) ◽  
pp. 3-10
Author(s):  
Volodymyr Kachynskyi ◽  
Michael Koval ◽  
Volodymyr Klymenko

Introduction. Magnetically impelled arc butt welding (MIAB) method differs from the existing arc methods by high productivity, stable quality of welded joints, high degree of mechanization and automation of the technological process and so on. Welding is performed automatically, which significantly reduces the influence of theoperator-welder on the quality of welded joints. The optimal values of the magnetic field induction components for thin-walled tubular parts with a diameter of 212 mm are determined. The basic technological parameters on welding of tubular details in stationary conditions are defined, it is: qualitative preparation of end faces of pipes;optimal distribution of induction of the control magnetic field (CMF); arc voltage; the magnitude and order of programming the welding current; the rate of closure of the arc gap in the process of upset. The influence of liquid metal melt in the arc gap during upset on the formation of welded joints of pipes is determined. Metallographicstudies showed no defects in the weld line and a relatively small area of thermal impact. Mechanical properties of welded joints at the level of mechanical properties of the base metal. Studies have been conducted to determine theparameters that affect the stable movement of the arc along the thin-walled edges of tubular parts and the influence of liquid metal melt in the arc gap during heating on the formation of welded joints.Problem Statement. Pipes of small diameters (up to 220 mm) are used in various industrial enterprises and construction of pipelines. The work requires high-performance automatic welding methods that allow obtaining stable and reliable welded joints.Purpose. The purpose is to raise labor productivity and to save materials by using equipment and technology for press welding of magnetically controlled arc of thin-walled tubular parts.Materials and Methods. Steel thin-walled tubular parts with a diameter of 42mm and 212 mm, with a wall thickness of 2.5… 3 mm were used for research on press welding. To create a control magnetic field, magnetic systems for tubular parts with a diameter of 212 mm were developed. Experimental welding was performed andsamples of welded joints of pipes with a diameter of 212 mm with a wall thickness of 3 mm were investigated. In the course of the research, the main parameters are recorded and the welding process is controlled by computer. Results. The main technological parameters: preparation of pipe ends; magnitude and distribution of control magnetic field induction; the arc voltage; the magnitude and order of programming the welding current; the rateof closure of the arc gap during upset, which affects the formation of welds have been determined. The experimental industrial technology for welding of thin-walled tubular details with a diameter up to 212 mm for thepurpose of its industrial use and the concept of the welding equipment has been developed, patents for the invention have been received.Conclusions. The mechanical and metallographic tests have shown that the properties of welded joints are at the level of the properties of the base metal. The use of press welding technology for tubular parts increases productivity and automates the welding process. The influence of the bandwidth of the liquid molten metal in the arc gap, while heating, on the formation of welded joints of pipes has been experimentally established. The main technological parameters and their influence on the quality of welded joints in the process of heating, the ends, and the upset of thin-walled tubular parts have been determined. Experimental industrial technology for press welding of thin-walled tubular parts has been developed and industrial tests have been conducted, in accordance with the customer's requirements.

2020 ◽  
Vol 993 ◽  
pp. 92-99
Author(s):  
Hao Zhen Guo ◽  
Li Cui ◽  
Hui Huang ◽  
Xiao Guo ◽  
Ding Yong He

This present work explored the welding process of gas metal arc welding for 4mm 5E61 Er-containing aluminum alloy, and then analyzed the microstructure and mechanical properties of the welded joint. The results demonstrated that when the welding current was 160A-220A, the welded joint penetration depth range was 5.75mm to 6.72mm, the melting width ranging from 9.68mm to 11.61mm. When the arc voltage increased from 17.5V to 22.5V, the penetration depth of the welded joint reduced from 6.95mm to 5.57mm, and the melting width ranged from 6.64mm to 11.86mm. When the welding current was 170A, the arc voltage was 17.5V, and the welding speed was 10mm/s. In the third case, a fully penetrated welded joint can be obtained and the joint strength was the highest value. The yield strength reached 192 MPa, the tensile strength can be 301 MPa, and the fracture location occurred in the HAZ. The weld zone of the welded joint mainly consist of the equiaxed dendrites size of 50 μm. The micro-hardness of the weld zone was lower than that of the base metal, and there was no obvious softening phenomenon in the heat affected zone.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


2021 ◽  
Vol 316 ◽  
pp. 233-239
Author(s):  
Viktor N. Pustovoit ◽  
Yuri V. Dolgachev ◽  
Yu.M. Dombrovskii

During heat treatment of machine parts and tools, besides the usual task of ensuring a high complex of mechanical and operational properties, there is a problem of distortion of products in the process of heat treatment and the need for editing operations (which are carried out manually and require significant labor costs). The known methods do not solve the problem of removing distortion for thin-walled parts of the ring shape completely. This paper shows the technical possibility of using the energy of a constant magnetic field for the "internal" straightening of products during heat treatment in the temperature range of super-plasticity of transformation. The use of special equipment makes it possible to eliminate virtually the distortion of thin-walled parts of the ring shape and to improve their mechanical properties.


2018 ◽  
Vol 197 ◽  
pp. 12007 ◽  
Author(s):  
Ekak Novianto ◽  
Priyo Tri Iswanto ◽  
Mudjijana Mudjijana

Aluminum alloy 5083 H116 has an exceptional performance in extreme environments, moderately high strength, outstanding corrosion resistance in salt water and high impact strength at cryogenic temperature. In the present study, Aluminum alloy AA 5083 H116 plates were joined by tungsten inert gas (TIG) process by single and double sided welding. Welding current used was 53 A and 80 A with the addition of purging gas during welding process. The effects on micro structure and mechanical properties like surface hardness and tensile strength of the welded region were studied. The results have shown that optimum current out of the two weld current used is 53 A. Better microstructures, tensile and hardness were found in the welded joint for the weld current 53 A where the tensile obtained in the softened zone was approximately 87% than that of the base metal (BM). With increasing of TIG current, the width of PMZ increased. In addition, the doubled sided welding sequence also produced broader PMZ area.


Academia Open ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Khasanov Doston

The wide possibilities of modifying manufactured industrial fibers aimed at improving their physico-mechanical properties, structural and technological parameters. In connection with the above, it was of interest to study the effect of a number of water-soluble compositions based on a poly-quaternary salt of dimethyl-allyl-β - methacryloyloxyethylammonium bromide in combination with glycerin on the structural and physico-mechanical properties of protein fiber, and also to study the effect of the composition on wool spinning and the quality of wool yarn .


2021 ◽  
Vol 50 (9) ◽  
pp. 2743-2754
Author(s):  
Ashish Jacob ◽  
Sachin Maheshwari ◽  
Arshad Noor Siddiquee ◽  
Abdulrahman Al-Ahmari ◽  
Mustufa Haider Abidi ◽  
...  

Certain age hardenable alloys such as AA7475 cannot be joined with perfection using fusion welding techniques. This requires non-conventional welding technique such as friction stir welding process to join these ‘difficult to weld’ alloys. In this study, three different cooling conditions i.e. cryogenic, sub-zero, and zero-degree Celsius temperature conditions have been analyzed to understand its impact on the welding process. In-process cooling was found to behave effectively and also enhanced the mechanical properties of the welded joints. A stable microstructure was clearly seen in the images observed under the metallurgical microscope. The weld efficiencies were found to be good in each of the samples which are indicative of a strong metallic joint. The effective cooling conditions employed had an overall positive impact on the joint.


2020 ◽  
Vol 21 (2) ◽  
pp. 67-71
Author(s):  
Gheorghe Novac ◽  
Bogdan Novac

The paper presents aspects regarding the influence of vibrations on the mechanical properties of welded joints, made with basic materials of Spanish and Romanian origin. In this research is presented the practical way to make the necessary assemblies for the proposed tests. The tests show that vibrations have a significant contribution to the quality of welded joints. This is explained by the appearance of several crystallization centres which makes the structure finer. By using vibrations, the atoms are rearranged in the structure, ensuring a proper de-tensioning. The stresses induced in welded metals are significantly reduced by the use of vibration during welding process. The addition materials have a significant contribution to the emergence of stresses in welded joints as well. These stresses can contribute to the appearance of microstructural constituents with significant hardness. The welding equipment and technologies used also have a significant contribution to the emergence of the remaining stresses. For example, the submerged arc welding technology (SAF) can introduce very high internal stresses. By using vibrations during the welding process, it is achieved a fine structure and a significant reduction of remaining stresses in the welded joints.


Author(s):  
Xinfeng Kan ◽  
Dengcui Yang ◽  
Zhengzhi Zhao ◽  
Jiquan Sun

Abstract Wire arc additive manufacture (WAAM) technology has a good development prospect, and can be used to manufacture large metal components with complex shapes in combination with traditional machining equipment. This paper adjusts the parameters from the perspective of heat input and arc control. It is found that the stacking quality of 316L stainless steel is the best when the arc voltage is 40V and the arc current is 360A. It is proposed to obtain the flat layers by pressure machining after every layer is stacked, which can create favorable conditions for manufacturing large-size components. And through the hot rolling experiment, it is proved that pressure machining can improve the density and uniformity of the microstructure, and thus enhance the comprehensive mechanical properties of components built by WAAM.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 136 ◽  
Author(s):  
Zheksenkul Alimkulov ◽  
Saule Zhiyenbayeva ◽  
Gulgaisha Baygazieva ◽  
Ainash Rustemova ◽  
Nurgul Batyrbayeva ◽  
...  

This article presents the results on creating the probiotic preparation with inclusion of microorganisms of highly productive lactic bacteria cultures with high biosynthetic and bactericidal properties. Conditions for production of bacterial preparation and multicomponent mix for flour enrichment and bread making were developed. Composition of the produced improving agent and premix for flour enrichment was studied and conditions for flour enrichment using the produced biological improving agent based on lactic bacteria were developed. Technological parameters of flour semi-products where determined on addition of the enriched flour. It was determined that produced improving agent plays a key role in transformation of protein-proteinase and carbohydrate-amylase flour complex, thereby improving the structural-mechanical properties of dough and further resulting in production of elastic crumb with thin-walled and even texture. 


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 714 ◽  
Author(s):  
Anderson Vergílio de Queiroz ◽  
Márcio Teodoro Fernandes ◽  
Leonardo Silva ◽  
Rudineli Demarque ◽  
Carlos Roberto Xavier ◽  
...  

Welding is a widely used process that requires continuous developments to meet new application demands of mechanical projects under severe conditions. The homogeneity of metallurgical and mechanical properties in welded joints is the key factor for any welding process. The applications of external magnetic fields, mechanical vibration, and ultrasound are the fundamental steps to achieve success in improving these properties. The present work aimed at determining suitable processing conditions to achieve the desired balance between metallurgical and mechanical properties of 304L steel in TIG (Tungsten Inert Gas) welding under the application of an external magnetic field. The microstructural characteristics of the weld bead were analyzed by optical microscopy (OM) and scanning electron microscopy (SEM). In order to evaluate the mechanical properties of the welded specimen, its Vickers microhardness map and Charpy impact energy at −20 °C were obtained. In addition, corrosion tests were carried out in the saline medium to compare the corrosion resistance of the joint with that of the base metal and that without the magnetic field. It was found that the external magnetic field decreased the percentage of delta ferrite, improved the filling of the weld pool with the weld metal, and decreased the primary and secondary dendritic spacings. The Vickers microhardness value under the magnetic field was found to be lower than that without the magnetic field, and the Charpy test showed no significant variation in energy absorption. Moreover, the welded joint produced under the external magnetic field manifested less resistance to corrosion.


Sign in / Sign up

Export Citation Format

Share Document