scholarly journals Intensifications of the wooling mechanism with increasing electric conductivity of fibers

Academia Open ◽  
2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Khasanov Doston

The wide possibilities of modifying manufactured industrial fibers aimed at improving their physico-mechanical properties, structural and technological parameters. In connection with the above, it was of interest to study the effect of a number of water-soluble compositions based on a poly-quaternary salt of dimethyl-allyl-β - methacryloyloxyethylammonium bromide in combination with glycerin on the structural and physico-mechanical properties of protein fiber, and also to study the effect of the composition on wool spinning and the quality of wool yarn .

2012 ◽  
Vol 542-543 ◽  
pp. 363-366
Author(s):  
Chi Qiang Yao ◽  
Li Yu ◽  
Yan Jun Li ◽  
Shi Ke Xu ◽  
Lan Xing Du

Dense Chinese Fir LVL was manufactured from Chinese Fir veneer which was impregnated with laboratory prepared water soluble phenol formaldehyde(PF) resin. The influences of various processing factors on properties of dense Chinese Fir LVL were explored. It is showed that the mechanical properties of dense Chinese Fir LVL first increase and then decrease with the increase of drying temperature and hot-pressing time. Plank performance becomes higher with the increase of compressibility and hot-pressing temperature. The optimum technological parameters for LVL process are set.


2016 ◽  
Vol 16 (1) ◽  
pp. 73-78
Author(s):  
M. Stachowicz ◽  
K. Granat ◽  
Ł. Pałyga

Abstract In the paper, an attempt was made to evaluate the effect of preliminary wetting of high-silica base during preparation of moulding sands containing a selected grade of sodium water-glass, designed for hardening by traditional drying or by electromagnetic microwaves at 2.45 GHz. In the research, some water was dosed during stirring the sandmix before adding 1.5 wt% of the binder that was unmodified sodium water-glass grade 137, characterised by high molar module within 3.2 to 3.4. Scope of the examinations included determining the effect of wetting the base on mechanical parameters like compression, bending and tensile strength, as well as on technological parameters like permeability, abrasion resistance and apparent density. The research revealed a significant positive effect of adding water to wet surfaces of high-silica base grains on mechanical properties and quality of moulding sands hardened by physical methods, in particular by microwave heating.


Author(s):  
А. П. Бусько ◽  
А. Т. Арабулі

Analysis of the features of the structure of faux fur of different raw materials to improve the shape stability of products and increase the exploitation process. Determination of technological parameters of the process of duplication of garments made of faux fur at which a standardized level of quality of the duplication operation is duplicated.Performing experimental investigation to determine the physical and mechanical properties of artificial fur. The work used the well-known methods for determining the flexural stiffness, air permeability and hydrophobicity of artificial fur were used in the work. Theoretical and experimental investigation is based on the basic principles of textile materials science. Systematic analysis and generalization were used to determine the state of the question and set the task. The experiment of the process of duplication of faux fur parts was planned and two-factor mathematical models were obtained, which are adequate to the researched process. The influence of the duplication process on artificial fur of different raw material composition is analyzed. The values of indicators of physical and mechanical properties of modern faux fur are determined. On the basis of two-factor mathematical models, recommendations are given on the choice of technological parameters of duplication of garments made of faux fur. The regularities of the process of duplicated of garment parts made of faux fur with adhesive gasket material under static loading are established. The values of indicators of physical and mechanical properties of modern faux fur are determined. The obtained scientific results allow at the design stage to rationally select faux fur in the manufacture of outerwear, and certain rational technological parameters of the process of duplication of garments from faux fur allow to ensure a standardized level of quality of duplication operation while minimizing energy losses of equipment.


2019 ◽  
Vol 802 ◽  
pp. 43-56
Author(s):  
Mikhail Georgievich Leontiev

Iron-based alloys (steel and cast iron) are currently the main structural materials that provide a high level of mechanical and technological properties along with a relatively low cost. Increasing the performance characteristics (tensile strength, hardness, wear resistance, corrosion resistance and, ultimately, service life) of cast irons and steels is an urgent task. The quality of castings made of cast iron and steel depends on many technological parameters that affect the processes of crystallization of the melt (casting temperature, molding mixture, chemical composition, volume of casting, overheating of the metal during smelting, etc.). It is possible to improve the quality of castings without changing the technology of smelting and pouring metal into molds, if you learn how to manage the crystallization process. The laboratories have grown defect – free iron crystals with a tensile strength of more than 1000 kg/m2 (strength of carbon steel-40 kg/m2). Attempts to improve the mechanical properties by creating a single crystal are not justified, so you have to go the opposite way-to influence the crystallization process to get a lot of small crystals (grains), which also allows you to achieve high mechanical properties. The dependence of the strength characteristics on the grain size is well described by the law of Hall-Petch, according to which when the average grain size is reduced by 3...5 times there is an increase in the hardness of the material, with a further decrease in the average grain size by more than 10 times – an increase in plasticity. Influence on the processes of crystallization of iron and steel melts (change the size of metal grains, change the shape, size and distribution of graphite inclusions) can be the introduction of small additives substances (modifiers), not chemically interacting with the matrix. The use of modifiers to increase the rate of crystallization, reduce the structural heterogeneity of castings has good prospects. In addition, unlike doping, modification does not require a large number of expensive additives and, accordingly, slightly increases the final cost of production.


2021 ◽  
Vol 17 (4) ◽  
pp. 3-10
Author(s):  
Volodymyr Kachynskyi ◽  
Michael Koval ◽  
Volodymyr Klymenko

Introduction. Magnetically impelled arc butt welding (MIAB) method differs from the existing arc methods by high productivity, stable quality of welded joints, high degree of mechanization and automation of the technological process and so on. Welding is performed automatically, which significantly reduces the influence of theoperator-welder on the quality of welded joints. The optimal values of the magnetic field induction components for thin-walled tubular parts with a diameter of 212 mm are determined. The basic technological parameters on welding of tubular details in stationary conditions are defined, it is: qualitative preparation of end faces of pipes;optimal distribution of induction of the control magnetic field (CMF); arc voltage; the magnitude and order of programming the welding current; the rate of closure of the arc gap in the process of upset. The influence of liquid metal melt in the arc gap during upset on the formation of welded joints of pipes is determined. Metallographicstudies showed no defects in the weld line and a relatively small area of thermal impact. Mechanical properties of welded joints at the level of mechanical properties of the base metal. Studies have been conducted to determine theparameters that affect the stable movement of the arc along the thin-walled edges of tubular parts and the influence of liquid metal melt in the arc gap during heating on the formation of welded joints.Problem Statement. Pipes of small diameters (up to 220 mm) are used in various industrial enterprises and construction of pipelines. The work requires high-performance automatic welding methods that allow obtaining stable and reliable welded joints.Purpose. The purpose is to raise labor productivity and to save materials by using equipment and technology for press welding of magnetically controlled arc of thin-walled tubular parts.Materials and Methods. Steel thin-walled tubular parts with a diameter of 42mm and 212 mm, with a wall thickness of 2.5… 3 mm were used for research on press welding. To create a control magnetic field, magnetic systems for tubular parts with a diameter of 212 mm were developed. Experimental welding was performed andsamples of welded joints of pipes with a diameter of 212 mm with a wall thickness of 3 mm were investigated. In the course of the research, the main parameters are recorded and the welding process is controlled by computer. Results. The main technological parameters: preparation of pipe ends; magnitude and distribution of control magnetic field induction; the arc voltage; the magnitude and order of programming the welding current; the rateof closure of the arc gap during upset, which affects the formation of welds have been determined. The experimental industrial technology for welding of thin-walled tubular details with a diameter up to 212 mm for thepurpose of its industrial use and the concept of the welding equipment has been developed, patents for the invention have been received.Conclusions. The mechanical and metallographic tests have shown that the properties of welded joints are at the level of the properties of the base metal. The use of press welding technology for tubular parts increases productivity and automates the welding process. The influence of the bandwidth of the liquid molten metal in the arc gap, while heating, on the formation of welded joints of pipes has been experimentally established. The main technological parameters and their influence on the quality of welded joints in the process of heating, the ends, and the upset of thin-walled tubular parts have been determined. Experimental industrial technology for press welding of thin-walled tubular parts has been developed and industrial tests have been conducted, in accordance with the customer's requirements.


2021 ◽  
pp. 117-124
Author(s):  
Олексій Денисович Попов ◽  
Анатолій Іванович Долматов ◽  
Володимир Федорович Сорокін

The subject of research in this article is the anode-oxide coating of aluminum parts of the hull type of aircraft engine units and aircraft units under the influence of cleaning fluids of different nature and chemical compositions. The purpose of this work is to experimentally test, the effect of different cleaning fluids, under different operating conditions and on different equipment for the stability of the anode-oxide protective coating. Many experiments have been performed on three types of washing machines: jet and immersion washing machine, which works on all types of water-soluble detergents, washing machine cleaning in vacuum or low-pressure environment, uses modified alcohols or hydrocarbon solvents as a washing liquid, and specialized stand for cleaning parts with aviation kerosene, aviation fuel TS-1 or jet A-1. Flushing modes were, covered throughout the range of operation of this equipment. The operating conditions of engines and units and the need to use an anode-oxide coating of parts are determined. The main types of liquids for washing parts are considered. For each of the experiments a special technology of these studies was determined, as technological parameters, parameters that can change and affect the stability of the coating, were set the following temperature, detergent concentration, operating time, operating pressure in the detergent supply system. The change of each of these parameters was, carried out with the fixation of other technological parameters to determine the direct indicators of the impact of each of the parameters and to establish the growth of their impact on the anode-oxide coating. The conditions under which the coating is destroyed and the percentage of its damage from the total surface of the part are determined, and the quality of cleaning the part by particle size distribution and visual method was, also determined. It is determined that the greatest negative effects on the anodic oxide coating in the solution of chromic anhydride are acidic and alkaline water-soluble pore cleaning liquids, so they have the best quality of cleaning from contaminants, for which a range of indicators is determined at which the coating does not deteriorate.


2013 ◽  
Vol 750-752 ◽  
pp. 655-658
Author(s):  
Guang Hui Qi

In order to settle the environmental pollution and improve the excellent rate of products, ZL109 piston alloy modified by Al9Fe3P master alloy was prepared in factory. The microstructures and mechanical properties of ZL109 piston alloy were invested respectively. The technological parameters and modifying effect of using Al9Fe3P alloy were researched too. Experiments show that high quality of ZL109 pistons can be produced by adding 0.4~0. 5wt% Al9Fe3P master alloy at 760-770°C.The maxim and average grain size of primary Si decrease largely, less than 66μm and 40μm respectively, and the mechanical properties were improved accordingly. It was proved that Al-Fe-P master alloys have advantages such as no pollution, no reaction slag, shorter modifying time and saving energy, which would reduce the total cost of piston products. So Al-Fe-P master alloy is a promising modifier to refine ZL109 piston alloys.


2018 ◽  
Author(s):  
V.A. Borisov ◽  
A.M. Menshikh ◽  
V.S. Sosnov ◽  
G.F. Monakhos

Показано действие минеральных удобрений, микрокристаллического комплексного водорастворимого удобрения «Мастер» и органоминерального наноудобрения с ростостимулирующей активностью «Арксойл» при капельном орошении на урожайность и качество сладкого перца нового гибрида F1 Темп. Сочетание основного удобрения с листовой и корневой подкормками позволяет получить до 65 т/га плодов перца высокого качества.The action of mineral fertilizers, microcrystalline complex water soluble fertilizer Master and organic mineral nano-fertilizer with growth-stimulating activity Arksoil under drip irrigation on the productivity and quality of sweet pepper of the new hybrid F1 Temp is shown. The combination of basic fertilizer with leaf and root fertilizing allows to obtain up to 65 t/ha of pepper fruits of high quality.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3755
Author(s):  
Štefan Gašpár ◽  
Tomáš Coranič ◽  
Ján Majerník ◽  
Jozef Husár ◽  
Lucia Knapčíková ◽  
...  

The resulting quality of castings indicates the correlation of the design of the mold inlet system and the setting of technological parameters of casting. In this study, the influence of design solutions of the inlet system in a pressure mold on the properties of Al-Si castings was analyzed by computer modelling and subsequently verified experimentally. In the process of computer simulation, the design solutions of the inlet system, the mode of filling the mold depending on the formation of the casting and the homogeneity of the casting represented by the formation of shrinkages were assessed. In the experimental part, homogeneity was monitored by X-ray analysis by evaluating the integrity of the casting and the presence of pores. Mechanical properties such as permanent deformation and surface hardness of castings were determined experimentally, depending on the height of the inlet notch. The height of the inlet notch has been shown to be a key factor, significantly influencing the properties of the die-cast parts and influencing the speed and filling mode of the mold cavity. At the same time, a significant correlation between porosity and mechanical properties of castings is demonstrated. With the increasing share of porosity, the values of permanent deformation of castings increased. It is shown that the surface hardness of castings does not depend on the integrity of the castings but on the degree of subcooling of the melt in contact with the mold and the formation of a fine-grained structure in the peripheral zones of the casting.


Sign in / Sign up

Export Citation Format

Share Document