DIAGNOSTIC LUNG PUNCTURE IN THE PNEUMONIAS OF INFANTS AND CHILDREN

PEDIATRICS ◽  
1969 ◽  
Vol 44 (4) ◽  
pp. 486-492
Author(s):  
Jerome O. Klein

Lung punctures were performed on 32 occasions in 28 infants with pneumonia to assist in specific bacteriologic diagnosis. The aspirates yielded pure cultures of Diplococcus pneumoniae and Staphylococcus aureus each in four patients and E. coli in two patients. The procedure is performed as for a thoracentesis and requires no special instruments. Three children had pneumothoraces and one had a small hemoptysis following the procedure, but only one child exhibited even minimal respiratory distress as a result of the tap. The literature on lung aspirates was reviewed with respect to the value and potential liability of the procedure. At present, diagnostic lung punctures should be considered in three groups of children with lower respiratory disease: (1) the critically ill child in whom a specific etiologic diagnosis is of major importance to guide antimicrobial therapy, (2) the child who has deteriorated while on therapy and in whom an etiologic agent is not available from the usual upper respiratory tract cultures, and (3) the child with pneumonia complicated by underlying disease or drugs limiting normal host defense mechanisms. In these three instances, the advantages of a specific etiologic diagnosis outweighs the small risk from the lung puncture.

Author(s):  
М. S. Saypullaev ◽  
А. U. Koychuev ◽  
Т. B. Mirzoeva

The successful conduct of disinfection measures largely depends on the availability of veterinary practice a highly efficient, environmentally safe disinfectants. In this regard, finding new highly efficient disinfectant remains relevant. Studies found that the "Polied" (OOO "Razvitie XXI Vek, Russia) can be attributed to the highly efficient and environmentally friendly means. Solutions "Polied" have a high disinfectant activity against smooth and rough surfaces in the laboratory against gram-positive, gram-negative bacteria, mycobacteria and spores of microorganisms. Studies have established that solutions should be "Polied" obezzarajivatmi E. coli (EA 1257) concentrations of 0.1% on smooth surfaces and Staphylococcus aureus concentration of 0.05% in 1 hour from the calculation of 0.25-0.3 litres/m2. Disinfection of rough test surfaces against Escherichia coli and Staphylococcus aureus occurred after treatment with 0,3% solution of 3-hour exposure, at a rate of 0.5 l/m2. It was also found that 1.0% solution "Polied" fully obezzarazhivatel test the surface of mycobacteria (PCs-5) and at double the 0.6% concentration for 24 hours. Disinfection of rough test surfaces contaminated with spores of B. cereus (PCs 96) was achieved with a 4.0% solution at twice the irrigation rate of 0.5 l/m2 at an exposure of 24 hours. Toxicity solutions of the drug "Polied" refer to "moderate" threat (hazard class 3) and low-hazard substances (4 hazard class) when applied to the skin, mucous membranes of the eyes, and inhalation exposure on the respiratory system.


1993 ◽  
Vol 27 (3-4) ◽  
pp. 267-270 ◽  
Author(s):  
M. T. Augoustinos ◽  
N. A. Grabow ◽  
B. Genthe ◽  
R. Kfir

A fluorogenic β-glucuronidase assay comprising membrane filtration followed by selective enumeration on m-FC agar at 44.5°C and further confirmation using tlie 4-metliylumbelliferyl-β-D-glucuronide (MUG) containing medium was evaluated for the detection of Escherichia coli in water. A total of 200 typical blue and non-typical blue colonies were isolated from sea and fresh water samples using initial selective enumeration on m-FC agar. Pure cultures of the selected colonies were further tested using the MUG assay and identified using the API 20E method. Of the colonies tested which were shown to be positive using the MUG assay 99.4% were Escherichia coli. The results of this study indicate the combination of the m-FC method followed by the MUG assay to be highly efficient for the selection and confirmation of E. coli from a wide range of environmental waters.


2019 ◽  
Vol 20 (11) ◽  
pp. 1203-1216 ◽  
Author(s):  
Vilma G. Duschak

American Trypanosomiasis, a parasitic infection commonly named Chagas disease, affects millions of people all over Latin American countries. Presently, the World Health Organization (WHO) predicts that the number of international infected individuals extends to 7 to 8 million, assuming that more than 10,000 deaths occur annually. The transmission of the etiologic agent, Trypanosoma cruzi, through people migrating to non-endemic world nations makes it an emergent disease. The best promising targets for trypanocidal drugs may be classified into three main groups: Group I includes the main molecular targets that are considered among specific enzymes involved in the essential processes for parasite survival, principally Cruzipain, the major antigenic parasite cysteine proteinase. Group II involves biological pathways and their key specific enzymes, such as Sterol biosynthesis pathway, among others, specific antioxidant defense mechanisms, and bioenergetics ones. Group III includes the atypical organelles /structures present in the parasite relevant clinical forms, which are absent or considerably different from those present in mammals and biological processes related to them. These can be considered potential targets to develop drugs with extra effectiveness and fewer secondary effects than the currently used therapeutics. An improved distinction between the host and the parasite targets will help fight against this neglected disease.


2020 ◽  
Vol 10 (3) ◽  
pp. 316-329
Author(s):  
Fateme Mirzajani ◽  
Amin Hamidi

Introduction: In this project, the growth and volatile metabolites profiles of Escherichia coli (E. coli ) and Staphylococcus aureus were monitored under the influence of silver base chemical, nanoparticle and ultra-highly diluted compounds. Materials & Methods: The treatments were done for 12000 life cycles using silver nanoparticles (AgNPs) as well as ultra-highly diluted Argentum nitricum (Arg-n). Volatile organic metabolites analysis was performed using gas chromatography mass spectrometry (GC-MS). The results indicated that AgNPs treatment made the bacteria resistant and adapted to growth in the nanoparticle condition. The use of ultra-highly diluted Arg-n initially increased growth but it decreased later. Also, with the continuous usage of these materials, no more bacterial growth was observed. Results: The most important compounds produced by E. coli are Acetophenone, Octyl acetate, Styrene, 1,8-cineole, 4-t-butyl-2-(1-methyl-2-nitroethyl)cyclohexane, hexadecane and 2-Undecanol. The main compounds derived from S. aureus are Acetophenone,1,8-cineole, Benzaldehyde, 2-Hexan-1-ol, Tridecanol, Dimethyl Octenal and tetradecane. Acetophenone and 1,8-cineole were common and produced by both organisms. Conclusion: Based on the origin of the produced volatiles, main volatiles percentage of untreated sample is hydrocarbon (>50%), while bacteria treatments convert the ratio in to aldehydes, ketones and alcohols in the case of AgNPs, (>80%) and aldehydes, ketones and terpenes in the case of Arg-n (>70%).


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


Author(s):  
Angélique Buton ◽  
Louis-Marie Bobay

Abstract Homologous recombination is a key pathway found in nearly all bacterial taxa. The recombination complex allows bacteria to repair DNA double strand breaks but also promotes adaption through the exchange of DNA between cells. In Proteobacteria, this process is mediated by the RecBCD complex, which relies on the recognition of a DNA motif named Chi to initiate recombination. The Chi motif has been characterized in Escherichia coli and analogous sequences have been found in several other species from diverse families, suggesting that this mode of action is widespread across bacteria. However, the sequences of Chi-like motifs are known for only five bacterial species: E. coli, Haemophilus influenzae, Bacillus subtilis, Lactococcus lactis and Staphylococcus aureus. In this study we detected putative Chi motifs in a large dataset of Proteobacteria and we identified four additional motifs sharing high sequence similarity and similar properties to the Chi motif of E. coli in 85 species of Proteobacteria. Most Chi motifs were detected in Enterobacteriaceae and this motif appears well conserved in this family. However, we did not detect Chi motifs for the majority of Proteobacteria, suggesting that different motifs are used in these species. Altogether these results substantially expand our knowledge on the evolution of Chi motifs and on the recombination process in bacteria.


2021 ◽  
Vol 22 (7) ◽  
pp. 3539
Author(s):  
Anastasia Meretoudi ◽  
Christina N. Banti ◽  
Panagiotis K. Raptis ◽  
Christina Papachristodoulou ◽  
Nikolaos Kourkoumelis ◽  
...  

The oregano leaves’ extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl–methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV–Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.


1991 ◽  
Vol 54 (7) ◽  
pp. 496-501 ◽  
Author(s):  
ARTHUR HINTON ◽  
GEORGE E. SPATES ◽  
DONALD E. CORRIER ◽  
MICHAEL E. HUME ◽  
JOHN R. DELOACH ◽  
...  

A Veillonella species and Enterococcus durans were isolated from the cecal contents of adult broilers. Mixed cultures of Veillonella and E. durans inhibited the growth of Salmonella typhimurium and Escherichia coli 0157:H7 on media containing 2.5% lactose (w/v). The growth of S. typhimurium or E. coli 0157:H7 was not inhibited by mixed cultures containing Veillonella and E. durans on media containing only 0.25% lactose or by pure cultures of Veillonella or E. durans on media containing either 0.25% or 2.5% lactose. The mixed cultures of Veillonella and E. durans produced significantly (P<0.05) more acetic, propionic, and lactic acids in media containing 2.5% lactose than in media containing 0.25% lactose. The inhibition of the enteropathogens was related to the production of lactic acid from lactose by the E. durans and the production of acetic and propionic acids from lactic acid by the Veillonella.


2014 ◽  
Vol 2 (4) ◽  
pp. 521-524
Author(s):  
RP Praveen ◽  
Ashalantha Nair

The aim of the present study was to compare the antimicrobial efficacy of methanolic extract of root, callus and fruit of Myxopyrum smilacifolium Blume. Antimicrobial activity was tested using agar well diffusion with four bacterial strains viz: Escherechia coli, Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus of which E. coli alone was gram negative. The fungal strain employed was Candida albicans. Root extracts shown to be effective only against B. subtilis. Fruit extracts showed the maximum antimicrobial activity against all the microbial species considered for the current study except against S. aureus. Highlight of the present study was the antimicrobial activity of callus extracts. DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11362  Int J Appl Sci Biotechnol, Vol. 2(4): 521-524 


2008 ◽  
Vol 414 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Ruud P. M. Dings ◽  
Judith R. Haseman ◽  
Kevin H. Mayo

Cationic peptides, known to disrupt bacterial membranes, are being developed as promising agents for therapeutic intervention against infectious disease. In the present study, we investigate structure–activity relationships in the bacterial membrane disruptor βpep-25, a peptide 33-mer. For insight into which amino acid residues are functionally important, we synthesized alanine-scanning variants of βpep-25 and assessed their ability to kill bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and to neutralize LPS (lipopolysaccharide). Activity profiles were found to vary with the bacterial strain examined. Specific cationic and smaller hydrophobic alkyl residues were crucial to optimal bactericidal activity against the Gram-negative bacteria, whereas larger hydrophobic and cationic residues mediated optimal activity against Gram-positive Staph. aureus. Lysine-substituted norleucine (n-butyl group) variants demonstrated that both charge and alkyl chain length mediate optimal activity. In terms of LPS neutralization, activity profiles were essentially the same against four species of LPS (E. coli 055 and 0111, Salmonella enterica serotype Typhimurium and Klebsiella pneumoniae), and different for two others (Ps. aeruginosa and Serratia marcescens), with specific hydrophobic, cationic and, surprisingly, anionic residues being functionally important. Furthermore, disulfide-bridged analogues demonstrated that an anti parallel β-sheet structure is the bioactive conformation of βpep-25 in terms of its bactericidal, but not LPS endotoxin neutralizing, activity. Moreover, βpep-25 variants, like the parent peptide, do not lyse eukaryotic cells. This research contributes to the development and design of novel antibiotics.


Sign in / Sign up

Export Citation Format

Share Document