SPECIAL REVIEWS

PEDIATRICS ◽  
1951 ◽  
Vol 7 (2) ◽  
pp. 269-293
Author(s):  
CHARLES C. CHAPPLE

A study has been made of the known phenomena which affect the biologic organism. Certain correlations have been found and other correlations are logically inferred. The common grounds of anatomic structures, the anatomic responses to endocrine stimuli, the interrelationships and interdependencies of the endocrines and external stimuli have been followed and have been related to cellular permeability and hyaluronic acid. Cellular phases, including the rhythmic alternations in physiologic functions, have been delineated and their importance stressed. Further, the probability is advanced that this rhythmicity originates physiologically in the brain but that the brain itself is capable of receiving transmissions from within and without the body, and disseminating them, again rhythmically, in normal or altered amplitude and frequency. Further experimental evidence of these correlations and their practical extrapolations into drug actions and the therapy of infections and metabolic disease will be reported and will include clinical, animal and in vitro studies. At present, the following conclusions seem justified: 1. No component of the body is capable of independent action. 2. Action in any component is reflected, according to its magnitude and directness of application, upon all the body. 3. All such actions are mediated by the brain. 4. There is a dynamic, rhythmic cyclicity in physiologic action which can be altered in amplitude and frequency. 5. These rhythms are alternations of cellular tenseness and relaxation. 6. The concomitants of the tense phase are compactness, impermeability, electric conductivity and contraction of all cells, and these characteristics might be described collectively as the factors operative in maturing the cell. The concomitants of the relaxed phase are laxness, permeability, electric resistance and expansion of all cells and are factors of growth. 7. The phase of tenseness is accompanied by an increase in certain hormonal activities and that of relaxation by an increase in others. 8. The hormones may be causes of the phase or the results of it. 9. Infectious disease cannot act as an extraneous agent capable of bringing its own engine into such a highly integrated mechanism but must act on the body through its ability to affect one of the body's mechanisms. 10. Drugs must act through the same channels available to disease. 11. Foods may contain, in addition to their caloric content, components capable of stimulating either the phase of cellular expansion or cellular compaction, particularly foods from the reproductive systems of plants or animals (milk, eggs, cereal, for example). 12. Vitamins each stimulate one phase and should be evaluated in terms of positive actions. 13. Inherent growth and maturation factors are not of fixed capacity in an individual but beyond certain limits must be supplied him or applied to him constantly. 14. The hormone most manifest in the tense phase is estrogen and so may be considered the maturation factor, and the one most manifest in the phase of relaxation or cell division is progesterone, which may be considered the growth factor.

1924 ◽  
Vol 39 (4) ◽  
pp. 533-542 ◽  
Author(s):  
James E. McCartney

These studies fail to confirm the statements previously made that microorganisms of the class of the globoid bodies of poliomyelitis may be cultivated in the Smith-Noguchi medium from the so called virus of encephalitis lethargica. They show equally that the herpes virus does not multiply in this medium. The experiments indicate, moreover, that the medium is unfavorable to the survival of the virus, while ordinary broth under aerobic conditions is more favorable for maintaining the activity of both the encephalitic and the herpes viruses. Probably no multiplication of either takes place in the latter medium but merely a survival, and for a maximum period of 6 days in the broth itself, and 12 days in the fragment of brain tissue immersed in the broth. Finally, it has been shown that with a suitable technique the viruses can be passed from the brain of one rabbit to that of another through a long series without contamination with cocci or other common bacterial forms. Hence we regard all reports of the finding of ordinary bacteria in the brain of cases of epidemic or lethargic encephalitis as instances of mixed or secondary infection arising during life, or examples of postmortem invasion of the body, or of faulty technique at the autopsy.


2021 ◽  
Author(s):  
Tatsuya Osaki ◽  
Yoshiho Ikeuchi

AbstractMacroscopic axonal connections in the human brain distribute information and neuronal activity across the brain. Although this complexity previously hindered elucidation of functional connectivity mechanisms, brain organoid technologies have recently provided novel avenues to investigate human brain function by constructing small segments of the brain in vitro. Here, we describe the neural activity of human cerebral organoids reciprocally connected by a bundle of axons. Compared to conventional organoids, connected organoids produced significantly more intense and complex oscillatory activity. Optogenetic manipulations revealed that the connected organoids could re-play and recapitulate over time temporal patterns found in external stimuli, indicating that the connected organoids were able to form and retain temporal memories. Our findings suggest that connected organoids may serve as powerful tools for investigating the roles of macroscopic circuits in the human brain – allowing researchers to dissect cellular functions in three-dimensional in vitro nervous system models in unprecedented ways.


2019 ◽  
Vol 20 (11) ◽  
pp. 2765 ◽  
Author(s):  
Jihwan Myung ◽  
Mei-Yi Wu ◽  
Chun-Ya Lee ◽  
Amalia Ridla Rahim ◽  
Vuong Hung Truong ◽  
...  

The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 599
Author(s):  
Olga Radulović ◽  
Slaviša Stanković ◽  
Branka Uzelac ◽  
Vojin Tadić ◽  
Milana Trifunović-Momčilov ◽  
...  

The main topic of this study is the bioremediation potential of the common duckweed, Lemna minor L., and selected rhizospheric bacterial strains in removing phenol from aqueous environments at extremely high initial phenol concentrations. To that end, fluorescence microscopy, MIC tests, biofilm formation, the phenol removal test (4-AAP method), the Salkowski essay, and studies of multiplication rates of sterile and inoculated duckweed in MS medium with phenol (200, 500, 750, and 1000 mg L−1) were conducted. Out of seven bacterial strains, six were identified as epiphytes or endophytes that efficiently removed phenol. The phenol removal experiment showed that the bacteria/duckweed system was more efficient during the first 24 h compared to the sterile duckweed control group. At the end of this experiment, almost 90% of the initial phenol concentration was removed by both groups, respectively. The bacteria stimulated the duckweed multiplication even at a high bacterial population density (>105 CFU mL−1) over a prolonged period of time (14 days). All bacterial strains were sensitive to all the applied antibiotics and formed biofilms in vitro. The dual bacteria/duckweed system, especially the one containing strain 43-Hafnia paralvei C32-106/3, Accession No. MF526939, had a number of characteristics that are advantageous in bioremediation, such as high phenol removal efficiency, biofilm formation, safety (antibiotic sensitivity), and stimulation of duckweed multiplication.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2340 ◽  
Author(s):  
Agnieszka Szkudlarek ◽  
Michał Wilk ◽  
Małgorzata Maciążek-Jurczyk

The interaction of drugs with human serum albumin (HSA) is an important element of therapy. Albumin affects the distribution of the drug substance in the body, as well as its pharmacokinetic and pharmacodynamic properties. On the one hand, inflammation and protein glycation, directly associated with many pathological conditions and old age, can cause structural and functional modification of HSA, causing binding disorders. On the other hand, the widespread availability of various dietary supplements that affect the content of fatty acids in the body means that knowledge of the binding activity of transporting proteins, especially in people with chronic diseases, e.g., diabetes, will achieve satisfactory results of the selected therapy. Therefore, the aim of the present study was to evaluate the effect of a mixture of fatty acids (FA) with different saturated and unsaturated acids on the affinity of acetohexamide (AH), a drug with hypoglycaemic activity for glycated albumin, simulating the state of diabetes in the body. Based on fluorescence studies, we can conclude that the presence of both saturated and unsaturated FA disturbs the binding of AH to glycated albumin. Acetohexamide binds more strongly to defatted albumin than to albumin in the presence of fatty acids. The competitive binding of AH and FA to albumin may influence the concentration of free drug fraction and thus its therapeutic effect.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zheling Feng ◽  
Jun Cao ◽  
Qingwen Zhang ◽  
Ligen Lin

AbstractInflammation is an active defense response of the body against external stimuli. Long term low-grade inflammation has been considered as a deteriorated factor for aging, cancer, neurodegeneration and metabolic disorders. The clinically used glucocorticoids and non-steroidal anti-inflammatory drugs are not suitable for chronic inflammation. Therefore, it’s urgent to discover and develop new effective and safe drugs to attenuate inflammation. Clerodane diterpenoids, a class of bicyclic diterpenoids, are widely distributed in plants of the Labiatae, Euphorbiaceae and Verbenaceae families, as well as fungi, bacteria, and marine sponges. Dozens of anti-inflammatory clerodane diterpenoids have been identified on different assays, both in vitro and in vivo. In the current review, the up-to-date research progresses of anti-inflammatory clerodane diterpenoids were summarized, and their druglikeness was analyzed, which provided the possibility for further development of anti-inflammatory drugs.


2017 ◽  
Vol 49 (3) ◽  
pp. 611
Author(s):  
Rudolf Von Sinner

RESUMO: A relação entre corpo e alma ou entre corpo, alma e espírito é um pro­blema antigo da antropologia, inclusive na teologia cristã. A questão continua em pauta hoje diante de novas descobertas e teorias nas neurociências. Praticamente migrou para a discussão da relação entre cérebro e mente. Hoje é consenso bastante amplo que quem comanda o corpo é o cérebro. Se aceitarmos isto, quem está no comando do cérebro? Sou eu, em primeira pessoa, minha alma, minha mente? Ou seria “ele”, em terceira pessoa, nosso próprio cérebro me determinando? E como ficaria na segunda pessoa – o ser humano como estando em relação a Deus a quem o chama de “tu”? Querendo superar preconceitos contra uma neurociên­cia determinista e uma teologia despreocupada com a ciência – e estas próprias posições, onde são defendidas –, o presente artigo procura tratar da condição humana em sua liberdade sempre precária e tolhida. Recorrendo à abordagem neurobiológica e psiquiátrica de Joachim Bauer, argumenta pela importância das relações do ser humano com o outro, com Deus e com o mundo, numa forma de ressonância (Hartmut Rosa). ABSTRACT: The relationship between body and soul or between body, soul and spirit is an ancient problem of anthropology, and also of Christian theology. In view of present day discoveries and new neuroscientific theories, the issue poses itself afresh. It practically migrated to the discussion of the relationship between brain and mind. Today, there is ample consensus that it is the brain that is in charge of the body. If we accept that, then who is in charge of the brain? Is it me, in the first person, my soul, my mind? Or is it “him”, in the third person, our own brain that determines me? And how about the second person – the human being in its relationship with God whom it calls “you”? Striving to overcome prejudices against a deterministic neuroscience, on the one hand, and a theology indifferent to science – and, indeed, such positions, wherever they are held – the present article seeks to deal with the human condition in its freedom, always precarious and restrained. Referring to neurobiological and psychiatric insights from Joachim Bauer, it argues for the importance of the relationship of the human being with the other, with God and with the world, in a form of resonance (Hartmut Rosa).


In the mid-seventeenth century William Croone had been the earliest among his contemporaries to concern himself with muscular motion. Thus, much of the discussion on muscular movement in the period after 1664 is either a commentary upon Croone’s views or is derived from them, and his influence was thus widespread, especially on the Continent. The background to Croone’s own views is largely that of Greek physiology as represented in the works of Galen. The first person who had a theory of muscle contraction seems to have been Erasistratus. Galen says that Erasistratus of Chios (fl. 290 b.c.) considered that when a muscle is filled with pneuma its breadth increases while its length diminishes and for this reason it is contracted. (1) Galen himself was impressed by the contractility of muscle and by the fact that this contractility depends on the nerve arising from the spinal cord and entering the muscle, where it branches repeatedly and sends its branches into all parts of the muscle. If the nerve, entering the muscle, be cut or injured or merely compressed the muscle loses all movement and sensitivity. (2) Galen considered that a muscle is made up of fibres and flesh. (3) The fibres of the muscle are continuous with those of its tendons at either end. In the body of the muscle itself the fibres are spread apart by the flesh contained in the interspaces between them. Each of these continuous fibres extending through both the tendon and the muscle Galen considers to be made up of finer fibres—on the one hand of inert and insensitive fibres of the same kind as occur in ligaments and, on the other hand, of sensitive fibres which are simply fine extensions of the branches of the nerves. (4) Galen does not, however, seem to offer, as does Erasistratus any mechanism to account for muscle contraction. To Galen the muscle is simply moved by the motor faculty which comes from the brain.


2021 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Ida Cariati ◽  
Roberto Bonanni ◽  
Gabriele Pallone ◽  
Giuseppe Annino ◽  
Virginia Tancredi ◽  
...  

In the past 40 years, scientific research has shown how Whole Body Vibration concept represents a strong stimulus for the whole organism. Low (<30 Hz), medium (30–80 Hz), and high (>80 Hz) frequency vibrations can have both positive and negative effects, depending on the oscillation type and duration of exposure to which the body is subjected. However, very little is known about the effects of vibratory training on the brain. In this regard, we verified whether three vibratory training protocols, differing in terms of vibration frequency and exposure time to vibration, could modulate synaptic plasticity in an experimental mouse model, by extracellular recordings in vitro in hippocampal slices of mice of 4 and 24 months old. Our results showed that vibratory training can modulate synaptic plasticity differently, depending on the protocol used, and that the best effects are related to the training protocol characterized by a low vibration frequency and a longer recovery time. Future studies will aim to understand the brain responses to various types of vibratory training and to explore the underlying mechanisms, also evaluating the presence of any structural and functional changes due to vibratory training.


Sign in / Sign up

Export Citation Format

Share Document