scholarly journals Reduction of anthropogenic loading on an agroecosystem by increasing its energy efficiency

2018 ◽  
Vol 26 (2) ◽  
pp. 71-76
Author(s):  
T. Gnatiuk

For full functioning , an artificially created agroecosystem should include qualitatively and quantitatively balanced components. This is possible if the anthropogenic burden on such a system is reduced and energy costs are balanced within it. In order to substantiate this statement, a production experiment was conducted in which short-term crop rotation was introduced on the land of an experimental field. Determination of energy efficiency of crop rotations and crop rotations in general was carried out by calculating technological maps of cultivating the corresponding crops. The higher the energy efficiency, the less the energy spent on cultivating crops and the less the cost of obtaining a unit of production from the corresponding area. After three years of research, we have determined that the most energy-intensive crop in short-term rotation is potatoes, less energy is spent on the cultivation of field pea-oat mixture, rye, oats with sowings of clover, and clover alone. The most energy-efficient was the organic fertilizer system (manure) for growing winter rye with a coefficient of energy efficiency of 5.10. For cultivation of field pea with oats for the same fertilizer system, the cultivation efficiency was 5.70. Growing oats with sowings of clover and using an organic system (manure) had an energy utility of 4.11. After application of the organic system (siderate) for the cultivation of winter rye, the coefficient of energy efficiency was 5.03 and for potatoes 2.21. After using the organoleptic system 50 : 50 to grow perennial grasses, this ratio was 33.05, and after the use of the mineral system for growing potatoes, 2.13. However for the cultivation of perennial grasses, we used the aftereffects of fertilizers introduced under the clover of the first year, and in the second year, under the perennial grasses, fertilizers were not applied at all, but for the cultivation of clover in crop rotation it is expedient to use an organomineral system of 50 : 50. Adhering to the basic principles of biological agriculture, namely the introduction of a scientifically grounded alternation of crops, rejecting the use of chemical plant protection products, avoiding the replacement of organic fertilizers (manure and siderate) by mineral fertilizers, it is possible to reduce energy costs for growing crops of crop rotation and crop rotation in general as a consequence, and thus to reduce the anthropogenic load on the whole agroecosystem .

2004 ◽  
Vol 84 (2) ◽  
pp. 177-186 ◽  
Author(s):  
B. Jankauskas ◽  
G. Jankauskiene ◽  
M. A. Fullen

A combination of perennial grass species and selected crop rotations can help prevent soil erosion in upland regions and minimize the risk of soil erosion and associated water pollution (to both terrestrial and aquatic ecosystems). Research data were obtained on sandy loam Eutric Albeluvisols at the Kaltinenai Research Station of the Lithuanian Institute of Agriculture on the undulating hilly topography of the Zemaiciai Uplands of Western Lithuania. The aim was to identify crops and crop rotations that would minimize soil erosion. Measured water erosion rates over 18 yr of field experiments were: 3.2–8.6 m3 ha-1 yr-1 under winter rye, 9.0–27.1 m3 ha-1 yr-1 under spring barley and 24.2–87.1 m3 ha-1 yr-1 under potatoes. Perennial grasses completely prevented water erosion, while the erosion-preventive grass-grain crop rotations (>50% grass) decreased soil losses on arable slopes of 2–5°, 5–10° and 10–14° by 75–80%. The grain-grass crop rotation (<50% grass) decreased rates by 23–24% compared to the field crop rotation. The main attributes of the proposed soil conservation systems were the careful selection of optimum erosion-preventive ecosystems (sod-forming perennial grasses or erosion-preventive crop rotations) with high erosion-resisting capabilities. These selected systems varied in response to slope gradient and thus assist erosion control and ecological stability of the undulating topography of Lithuania. These results may have wider applicability on the undulating landscapes of the temperate agricultural zone. Key words: Undulating upland topography, water erosion rates, erosion-preventive crop rotations, temperate climate


2019 ◽  
Vol 30 ◽  
pp. 39-45
Author(s):  
L. V. Potapenko ◽  
L. М. Skachok ◽  
N. I. Horbachenko

Objective. To evaluate the influence of different fertilizer systems in combination with microbial preparations on the change of nutritional regime of sod-podzolic soil and the yield of crops of short-term crop rotation in the Polissia region. Methods. Fields — stationary experiment, laboratory, mathematical and statistical. Results. On the basis of studies conducted in a long-term stationary experiment on sod-podzolic soil, analysis and determination of dependence between the content of available compounds of nitrogen, phosphorus, potassium on fertilizer systems and microbial preparations was performed. It was found that the highest nutrient reserves in the soil were in the organo-mineral fertilizer system “manure + green manure + NPK” in combination with microbial preparations: the content of mineral compounds of nitrogen — 82.32 kg/ha, available phosphorus — 223 mg/kg of soil, and exchangeable potassium — 122 mg/kg, which is 1.8, 1.4 and 1.6 times higher than the parameter of the mineral fertilizer system, respectively. At the same time, due to the inoculation of seeds nitrogen reserves in the soil can increase up to 26 %. The application of the fertilizer system “manure + green manure + NPK” provides an optimal level of root nutrition of crops of short-term crop rotation and, as a consequence, the highest productivity of crops, which amounted to: winter rye — 5.2 FU (fodder units), potatoes — 7.7 FU, oats — 3.3, lupine — 3.8 FU on background without inoculation and 5.7, 8.3, 3.9 and 4.4 FU, respectively, when microbial preparations were applied. The increase due to inoculation with this fertilizer system amounted to 0.5 fodder units (FU) for winter rye, 0.5 FU for potatoes, and 0.6 FU for oats, and 0.6 FU for lupine. Conclusion. The nutrient regime of sod-podzolic soil depends on the use of various fertilizer systems in combination with microbial preparations. Organic-mineral fertilizer system “manure + green manure + NPK” under the use of microbial preparations is most effective for growing crops on sod-podzolic soil in short-term crop rotation. This combined fertilizer system contributes to the greatest accumulation of nutrient reserves: nitrogen mineral compounds — 82.3 kg/ha, available phosphorus — 220 mg/kg of soil and exchangeable potassium — 122 mg/kg.


Author(s):  
Ol'ga Gladysheva ◽  
Oksana Artyuhova ◽  
Vera Svirina

The results of long-term research in experiments with crop rotations with different clover saturation are presented. It is shown that the cluster has a positive effect on the main indicators of vegetation of dark-gray forest soil. The introduction of two fields of perennial grasses into the six-field crop rotation significantly increases both the humus reserves and increases the productivity of arable land by 1.5–2 times compared to the crop rotation with a field of pure steam.


Author(s):  
Saulius GUŽYS ◽  
Stefanija MISEVIČIENĖ

The use of nitrogen fertilizer is becoming a global problem; however continuous fertilization with nitrogen ensures large and constant harvests. An 8 year research (2006–2013) was conducted to evaluate the relationships between differently fertilized cultivated plant rotations. The research was conducted in Lipliunai (Lithuania) in the agroecosystem with nitrogen metabolism in fields with deeper carbonaceous soil, i.e. Endocalcari Endohypogleyic Cambisol (CMg-n-w-can). The research area covered three drained plots where crop rotation of differently fertilized cereals and perennial grasses was applied. Samples of soil, water and plants were investigated in the Chemical Analysis Laboratory of the Aleksandras Stulginskis University certified by the Environment Ministry of the Republic of Lithuania. The greatest productivity was found in a crop rotation with higher fertilization (N32-140). In crop rotation with lower fertilization (N24-90) productivity of cereals and perennial grasses (N0-80) was 11–35 % lower. The highest amount of mineral soil nitrogen was found in cereal crop rotation with higher fertilization. It was influenced by fertilization and crop productivity. The lowest Nmin and Ntotal concentrations in drainage water were found in grasses crop rotation. Crop rotations of differently fertilized cereals increased nitrogen concentration in drainage water. Nmin concentration in water depended on crop productivity, quantity of mineral soil nitrogen, fertilization, and nitrogen balance. The lowest nitrogen leaching was found in the crop rotation of grasses. Cereal crop rotation increased nitrogen leaching by 12–42 %. The usage of all crop rotations resulted in a negative nitrogen balance, which essentially depended on fertilization with nitrogen fertilizer.


Author(s):  
Andris Lejiņš ◽  
Biruta Lejiņa

Buckwheat research has been carried out within the long-term crop rotation stationary that was established in 1969 as a part of the Research institute of Agriculture. Buckwheat proportion within the partcular crop rotations went up to 22%. The highest buckwheat yields were obtained from the buckwheat variants that where cultivated after winter rye, and within the buckwheat monoculture experimental plots. A considerable yield decrease was observed when cultivating buckwheat after potatoes. Weeds in the buckwheat sowing were effectively brought under control by the herbicide Butisane 400 (1.5 l ha-1), applied immediately after sowing and Betanal AM 2.5 l ha-1 after seedling in 2-3 leaves stage.


2021 ◽  
Vol 32 ◽  
pp. 02007
Author(s):  
Izida Ilyinskaya ◽  
Emma Gaevaya

Field experiments were carried out in the Rostov region on the slope of ordinary chernozems in the system of contour-strip organization of the territory in 2011-2020. The aim of the research was the development of agrotechnical methods (design of crop rotation, the method of basic tillage and the background of fertilizers), which ensure high productivity of crop rotations on the eroded slope of ordinary chernozems and the preservation of fertility. The experiment included three factors: the design of the crop rotation, the method of the main tillage, the background of mineral fertilizers. It was found that, on average, for the period of research, the level of mineral nutrition has the greatest influence on the productivity of the crop rotation (83.9%), followed by the design of the crop rotation (14.9%). The influence of basic tillage is estimated at only 1.2%. It was found that the introduction of 20% of perennial grasses into the structure of crop rotation reduces soil washout by 19.5-27.7%, and an increase in the proportion of perennial grasses to 40% by 38.3-43.8%. The use of chisel tillage reduces washout by 15.6-24.2%, and with it the loss of humus. In the “C” crop rotation in all variants of the experiment, the humus content increased by 0.010.03%. It was revealed that the productivity of all the studied crop rotations changed under the influence of agrotechnical methods, reaching in the crop rotation “C” with 40% of perennial grasses and 60% of grain crops on average for the studied period the highest value of 3.53 t / ha of grain units, which is 9.3% higher than in the “B” crop rotation and 17.3% higher than in the “A” crop rotation.


2015 ◽  
Vol 13 (2) ◽  
pp. e0303 ◽  
Author(s):  
Saulius Guzys ◽  
Stefanija Miseviciene

<p>Inappropriate use of nitrogen fertilisers is becoming a global problem; however, continuous fertilisation with N fertiliser ensures large and constant harvests. To evaluate the relationships of differently fertilised cultivated plant rotation with N metabolism in the agroecosystem the research was conducted between 2006 and 2013 at Lipliūnai, Lithuania, in fields with calcareous gley brown soil, <em>i.e.</em> <em>Endocalcari Endohypogleyic Cambisol</em> (<em>CMg-n-w-can</em>). The research area covered three drained plots where crop rotation of differently fertilised cereals and perennial grasses were applied. The greatest productivity was found in a higher fertilisation (TII, 843 kg N/ha) cereals crop rotation. With less fertilisation (TI, 540 kg N/ha) crop rotation productivity of cereals and perennial grasses (TIII, 218 kg N/ha) was 11-35% lower. The highest amount of mineral soil N (average 76 kg/ha) was found in TI. It was influenced by fertilisation (<em>r</em>=0.71) and crop productivity (<em>r</em>=0.39). TIII tended to reduce N<sub>min</sub> (12.1 mg/L) and N<sub>total</sub> (12.8 mg/L) concentrations in drainage water and leaching of these elements (7 and 8 kg/ha). N<sub>min</sub> and N<sub>total</sub> concentrations in the water depended on crop productivity respectively (<em>r</em>=0.48; <em>r</em>=0.36), quantity of mineral soil N (<em>r</em>=0.65; <em>r</em>=0.59), fertilisation (<em>r</em>=0.59; <em>r</em>=0.52), and N balance (<em>r</em>=0.26; <em>r</em>=0.35). Cereal crop rotation increased N leaching by 12-42%. The use of all crop rotations resulted in a negative N balance. Nitrogen balance depended on fertilisation with N fertiliser (<em>r</em>=0.55). The application of perennial grasses crop rotation in agricultural fields was the best environmental tool, reducing N migration to drainage.</p>


Author(s):  
R. A. Vozhegova ◽  
◽  
N. M. Galchenko ◽  
D. I. Kotelnikov ◽  
V. M. Мaliarchuk ◽  
...  

The article reflects the results of research on the study of crop rotation productivity and energy efficiency components of crop rotation technology in terms of depending on different methods and depth of basic tillage. The purpose of the research was to determine the impact of basic tillage and fertilization on crop rotation productivity indicators and indicators of economic efficiency of crop rotation technology in irrigated conditions in the south of Ukraine. Methods: the field, in-gravimetric, visual, laboratory, calculation-comparative, mathematically-statistical and confessedly in Ukraine methods and methodical recommendations. The research was conducted during 2016-2019 in the research fields of the Askanian SARS IIA NAAS of Ukraine. Results. The use of differentiated and shallow single-depth system of basic tillage to the same productivity indicators at the level of 8.21 and 8.22 t.o.o./ha of products. However, the use of shallow tillage with different depths increased the productivity to 8.49 tons of water/ha, or 3.3%, and with no-till the lowest productivity was obtained 7.15 tons of water/ha. At the same time, the organo-mineral system of fertilizer N90P40 + green manure + crop residues yielded at the level of 7.61 tons per hectare. The improvement of nitrogen nutrition of crop rotations to N105P40 + green manure to get her with the earning of crop residues increased this figure to 8.06 ton so.o./ha, or 5.9% more than the control. At the same time, the maximum productivity indicators of 8.52 tons per hectare were obtained for the N120P40 system + green manure + post-harvest residues, which is actually 12% more than in the control. The reduction of total energy consumption was obtained with a shallow single-depth system of main cultivation of 26.45 GJ/ha, and the lowest values of 25.27 GJ/ha were obtained with no-till, which is 6.8% less than in the control. Application of organo-mineral fertilizer system N90P40 + green manure + post harvest residues formed costs at the level of 24.94 GJ/ha, increase of nitrogen nutrition of crop rotations to N105P40 + green manure with post harvest residues increased costs to 26.35 GJ/ha, and the highest costs 26.37 GJ/ha was obtained in the variant N120P40 + green manure, where the figures were higher by 11.5% compared to the control. Almost the same energy yield was obtained for differentiated and single-depth shallow tillage systems 127.33 and 127.64 GJha, respectively. The application of the system of multi-depth tillage increased the yield to 133.24 GJ/ha. Conclusion. The calculation of energy efficiency testifies that growing of agricultural cultures at bringing of N120Р40 + green manure + post-harvest residues in the system of the plowless on different depth is most expedient and justified from the power point of view. Technology of growing, which is based on these agrotechnology measures provides the receipt of maximal energy coefficient at the level of 4,96


2020 ◽  
Vol 21 (6) ◽  
pp. 752-763
Author(s):  
A. K. Svechnikov

It is known that significant saving of nitrogen fertilizers are due to perennial legume-cereal grasses use in crop rotations. From 2013 to 2018in the Mari El Republic six-field grass-grain fodder crop rotations were compared on sod-podzolic soils with a very high level of phosphorus and potassium. In the third rotation their productivity and bioenergetic efficiency, changes in several important soil fertility indicators, and crud protein content in the produced fodder were evaluated. The main difference between the crop rotations was based on the duration of the clover-alfalfa-timothy grass mixture (CAG) use: from one year to three years. In given experiment there was also studied the effect of mineral nitrogen (variants N0, N60) against Р60К60 background on the yield of crop rotations. During six years, there was no significant soil acidification in the variants. Each additional year of clover-alfalfa-timothy grass mixture use raised the energy efficiency ratio of crop rotations by 24-47 % (from 1.13-1.24 by one-year use to 2.08-2.25 by three years of use). Three-year CAG use as compared with one- and two-years has given to the crop rotation significant advantages in energy efficiency (up to two times) and productivity (approximately 40-80 %) of cultivated crops. After refusing to apply nitrogen fertilizations in such crop rotation, average crop productivity, soil humus and nitrogen content in the soil were better preserved. The average crude protein content in dry matter of the obtained fodder increased from 12.7 % to 14.6 % when prolonging theca use up to two years. The average energy value of the yield per rotation was recorded low (8.4-8.7 MJ/kg) and did not depend on the studied factors.


2021 ◽  
Vol 67 (No. 12) ◽  
pp. 739-746
Author(s):  
Gerhard Moitzi ◽  
Reinhard Neugschwandtner ◽  
Hans-Peter Kaul ◽  
Helmut Wagentristl

The effect of crop sequences (CR – continuous winter rye; CropR – three-field crop rotation of winter rye-spring barley-bare fallow) and fertilisation systems (unfertilised control, mineral fertiliser (NPK), farmyard manure (FYM)) on crop yield, energy efficiency indicators and land demand were analysed in a long-term experiment under Pannonian climate conditions. Due to lower fuel consumption in the bare fallow, the total fuel consumption for CropR was 27% lower than in CR. It was for NPK and FYM fertilisation by 29% and 42% higher than in the control. Although the energy output was lower in CropR than CR, the energy use efficiency for grain production increased by 35% and for above-ground biomass production by 20%. Overall crop sequences, the NPK treatment had higher crop yields, energy outputs and net-energy output with a lower energy use efficiency than the unfertilised control. CropR increased the land demand just by 20% in comparison to CR, although one-third of the land was not used for crop production. The land demand could be decreased with fertilisation by 50% (NPK) or 48% (FYM). A bare fallow year in the crop rotation decreased the crop yield, energy input and increased the energy use efficiency and land demand.  


Sign in / Sign up

Export Citation Format

Share Document