scholarly journals Morphological and radiological study of lymph nodes in dromedaries in Algeria

2020 ◽  
Vol 11 (2) ◽  
pp. 330-337
Author(s):  
D. E. Rahmoun ◽  
M. A. Lieshchova ◽  
M. A. Fares

Despite significant progress in the study of the subtle mechanisms of interaction between cellular and molecular elements in immune responses, the general structure of the organs of the immune system, including the lymph node, has not been sufficiently studied, in particular in large farm animals. The lymph nodes of sexually mature camels have been studied anatomically and morphologically and advanced studies conducted using an X-ray system and a computer densitometer scanner with injection of a contrast medium. The topography and characteristics of the morphometric parameters (absolute and relative mass, linear measurements, volume) of certain somatic and visceral lymph nodes were determined. The mass of the lymph nodes studied varies according to the location and the interest of the organ in the satellite defense of the lymphoid system, For part of the x-ray examination of the lymph nodes, organs of large inguinal and axillary shape were selected after passing through a solution of tetraethyl-4,4-diamino-triphenylmethane oxalate, the lymph vessels were dilated and darkened, then iodine injections were made into the afferent lymphatic vessel of two lymph nodes; they were placed on the radiological cassette, a photograph taken on conventional radiography, for computer densitometer, the examination was made without preparation of the organs. A capsule encompasses the parenchyma of the lymph node, whose internal structure is composed of different zones, cortical, paracortical and medullary, on the one hand the lymphatic vessels were very clear especially with the conventional radiography with preparation of the organs, while the computer densitometer clearly revealed the deep texture of the parenchyma, basing it on the intensity of emission saturation from the use of computer densitometer.

2020 ◽  
Vol 11 (2) ◽  
pp. 330-337
Author(s):  
D. E. Rahmoun ◽  
M. A. Lieshchova ◽  
M. A. Fares

Despite significant progress in the study of the subtle mechanisms of interaction between cellular and molecular elements in immune responses, the general structure of the organs of the immune system, including the lymph node, has not been sufficiently studied, in particular in large farm animals. The lymph nodes of sexually mature camels have been studied anatomically and morphologically and advanced studies conducted using an X-ray system and a computer densitometer scanner with injection of a contrast medium. The topography and characteristics of the morphometric parameters (absolute and relative mass, linear measurements, volume) of certain somatic and visceral lymph nodes were determined. The mass of the lymph nodes studied varies according to the location and the interest of the organ in the satellite defense of the lymphoid system, For part of the x-ray examination of the lymph nodes, organs of large inguinal and axillary shape were selected after passing through a solution of tetraethyl-4,4-diamino-triphenylmethane oxalate, the lymph vessels were dilated and darkened, then iodine injections were made into the afferent lymphatic vessel of two lymph nodes; they were placed on the radiological cassette, a photograph taken on conventional radiography, for computer densitometer, the examination was made without preparation of the organs. A capsule encompasses the parenchyma of the lymph node, whose internal structure is composed of different zones, cortical, paracortical and medullary, on the one hand the lymphatic vessels were very clear especially with the conventional radiography with preparation of the organs, while the computer densitometer clearly revealed the deep texture of the parenchyma, basing it on the intensity of emission saturation from the use of computer densitometer.


Author(s):  
E. Gavrilina ◽  
A. Kolesnyk

The visceral and somatic lymph nodes of a pig of domestic 1-120 day old were examined. Found that the lymph nodes have a common connective tissue capsule and different levels of fusion of individual subunits. In the center of each subunit, the capsule forms invaginations of the capsular trabecula, dividing the parenchyma of each structural unit into «Ʊ»-shaped structures, fused with lateral and lower parts. The number and degree of fusion of subunits is different and depends on the age of the animals and the location of the lymph node. The greatest degree of fusion of individual units of the lymph node was found in the superficial cervical and axillary I ribs. In the mandibular, superficial parotid and superficial inguinal lymph nodes, the segments are clearly contoured already in newborn piglets. Segments are predominantly bean-spherical in shape with a wide base. The fusion of the segments occurs in their central part, and on the surface the gates of the subunits are clearly contoured in the form of numerous depressions. In the visceral lymph nodes, the portal and splenic lymph nodes have the smallest segmentation, and the gastric, tracheobronchial, and iliocolic lymph nodes are the largest. The number of segments varies from two in newborn piglets to five in 120-day-old pigs. The variability of the morphometric parameters of the lymph nodes of a domestic pig is due to a different number of afferent lymphatic vessels, and, accordingly, to different scales of the lymphatic basins. Thus, the lymph nodes of the domestic pig are complexes of subunits fused to varying degrees. Somatic lymph nodes are highly segmented. The degree of consolidation of subunits in the visceral lymph nodes is less pronounced. Linear measurements of organs vary depending on the age of the animals, gradually increasing up to 120 days with a tendency for these indicators to prevail in the somatic lymph nodes. Key words: domestic pig, lymph node, subunit, topography, morphometry


Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1507 ◽  
Author(s):  
Ginter ◽  
Karagiannis ◽  
Entenberg ◽  
Lin ◽  
Condeelis ◽  
...  

Cancer cells metastasize from primary tumors to regional lymph nodes and distant sites via the lymphatic and blood vascular systems, respectively. Our prior work has demonstrated that in primary breast tumors, cancer cells utilize a three-cell complex (known as tumor microenvironment of metastasis, or TMEM) composed of a perivascular macrophage, a tumor cell expressing high levels of the actin-regulatory protein mammalian enabled (Mena), and an endothelial cell as functional “doorways” for hematogenous dissemination. Here, we studied a well-annotated case–control cohort of human invasive ductal carcinoma of the breast and metastatic lymph nodes from a separate breast cancer cohort. We demonstrate that in primary breast tumors, blood vessels are always present within tumor cell nests (TCNs) and tumor-associated stroma (TAS), while lymphatic vessels are only occasionally present in TCN and TAS. Furthermore, TMEM doorways not only exist in primary tumors as previously reported but also in lymph node metastases. In addition, we show that TMEM intravasation doorways are restricted to the blood vascular endothelium in both primary tumors and lymph node metastases, suggesting that breast cancer dissemination to distant sites from both primary tumors and metastatic foci in lymph nodes occurs hematogenously at TMEM doorways. TMEMs are very rarely detected at lymphatic vessels and do not confer clinical prognostic significance, indicating they are not participants in TMEM-associated hematogenous dissemination. These findings are consistent with recent observations that hematogenous dissemination from lymph nodes occurs via blood vessels.


2008 ◽  
Vol 205 (12) ◽  
pp. 2839-2850 ◽  
Author(s):  
Claudia Jakubzick ◽  
Milena Bogunovic ◽  
Anthony J. Bonito ◽  
Emma L. Kuan ◽  
Miriam Merad ◽  
...  

Observations that dendritic cells (DCs) constitutively enter afferent lymphatic vessels in many organs and that DCs in some tissues, such as the lung, turnover rapidly in the steady state have led to the concept that a major fraction of lymph node DCs are derived from migratory DCs that enter the lymph node through upstream afferent lymphatic vessels. We used the lysozyme M–Cre reporter mouse strain to assess the relationship of lymph node and nonlymphoid organ DCs. Our findings challenge the idea that a substantial proportion of lymph node DCs derive from the upstream tissue during homeostasis. Instead, our analysis suggests that nonlymphoid organ DCs comprise a major population of DCs within lymph nodes only after introduction of an inflammatory stimulus.


2013 ◽  
Vol 210 (8) ◽  
pp. 1509-1528 ◽  
Author(s):  
Suvendu Das ◽  
Eliana Sarrou ◽  
Simona Podgrabinska ◽  
Melanie Cassella ◽  
Sathish Kumar Mungamuri ◽  
...  

Lymphatic vessels are thought to contribute to metastasis primarily by serving as a transportation system. It is widely believed that tumor cells enter lymph nodes passively by the flow of lymph. We demonstrate that lymph node lymphatic sinuses control tumor cell entry into the lymph node, which requires active tumor cell migration. In human and mouse tissues, CCL1 protein is detected in lymph node lymphatic sinuses but not in the peripheral lymphatics. CCR8, the receptor for CCL1, is strongly expressed by human malignant melanoma. Tumor cell migration to lymphatic endothelial cells (LECs) in vitro is inhibited by blocking CCR8 or CCL1, and recombinant CCL1 promotes migration of CCR8+ tumor cells. The proinflammatory mediators TNF, IL-1β, and LPS increase CCL1 production by LECs and tumor cell migration to LECs. In a mouse model, blocking CCR8 with the soluble antagonist or knockdown with shRNA significantly decreased lymph node metastasis. Notably, inhibition of CCR8 led to the arrest of tumor cells in the collecting lymphatic vessels at the junction with the lymph node subcapsular sinus. These data identify a novel function for CCL1–CCR8 in metastasis and lymph node LECs as a critical checkpoint for the entry of metastases into the lymph nodes.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Shuiquan Lin ◽  
Yangbo Lv ◽  
Jianguang Xu ◽  
Xinglong Mao ◽  
Zhenhong Chen ◽  
...  

Abstract Background and objectives Lymph node metastasis is a key factor in predicting and determining the prognosis of patients with colorectal cancer (CRC). Sodium channels are highly expressed in a variety of tumors and are closely related to tumor development, metastasis, and invasion. We investigated the relationship between the expressions of different subtypes of Nav channels and lymph node metastasis of CRC. Methods Real-time PCR (RT-qPCR) was carried out to measure the expressions of different sodium channel subtypes, chemokine receptors (CCR2, CCR4, CCR7), and lymphocyte infiltration-related biomarkers (CD3e, CD8a, IL-2RA) in CRC tissues from 97 patients. The expressions of Nav1.5 and Nav1.6 in surgically isolated lymph nodes were detected by immunohistochemistry. Correlation analysis between expressions of different genes and lymph node metastasis was performed by two-tailed t test. Results Nav1.1 and Nav1.6 were highly expressed in CRC tissues and positively correlated with CRC lymph node metastasis. Nav1.6 was also highly expressed in metastatic lymph nodes. Further analysis showed that the high expression of Nav1.6 was closely related to the one of CCR2\CCR4 in tumor lymph node metastasis. Conclusions These results suggested that Nav1.6 might be a novel marker for CRC lymph node metastasis.


Author(s):  
Lionel Gillot ◽  
Louis Baudin ◽  
Loïc Rouaud ◽  
Frédéric Kridelka ◽  
Agnès Noël

AbstractLymph node metastasis is a crucial prognostic parameter in many different types of cancers and a gateway for further dissemination to distant organs. Prior to metastatic dissemination, the primary tumor prepares for the remodeling of the draining (sentinel) lymph node by secreting soluble factors or releasing extracellular vesicles that are transported by lymphatic vessels. These important changes occur before the appearance of the first metastatic cell and create what is known as a pre-metastatic niche giving rise to the subsequent survival and growth of metastatic cells. In this review, the lymph node structure, matrix composition and the emerging heterogeneity of cells forming it are described. Current knowledge of the major cellular and molecular processes associated with nodal pre-metastatic niche formation, including lymphangiogenesis, extracellular matrix remodeling, and immunosuppressive cell enlisting in lymph nodes are additionally summarized. Finally, future directions that research could possibly take and the clinical impact are discussed.


Author(s):  
Stanley P. Leong ◽  
Alexander Pissas ◽  
Muriel Scarato ◽  
Francoise Gallon ◽  
Marie Helene Pissas ◽  
...  

AbstractThe lymphatic system is a complicated system consisting of the lymphatic vessels and lymph nodes draining the extracellular fluid containing cellular debris, excess water and toxins to the circulatory system. The lymph nodes serve as a filter, thus, when the lymph fluid returns to the heart, it is completely sterile. In addition, the lymphatic system includes the mucosa-associated lymphoid tissue, such as tonsils, adenoids, Peyers patches in the small bowel and even the appendix. Taking advantage of the drainage system of the lymphatics, cancer cells enter the lymphatic vessels and then the lymph nodes. In general, the lymph nodes may serve as a gateway in the majority of cases in early cancer. Occasionally, the cancer cells may enter the blood vessels. This review article emphasizes the structural integrity of the lymphatic system through which cancer cells may spread. Using melanoma and breast cancer sentinel lymph node model systems, the spread of early cancer through the lymphatic system is progressive in a majority of cases. The lymphatic systems of the internal organs are much more complicated and difficult to study. Knowledge from melanoma and breast cancer spread to the sentinel lymph node may establish the basic principles of cancer metastasis. The goal of this review article is to emphasize the complexity of the lymphatic system. To date, the molecular mechanisms of cancer spread from the cancer microenvironment to the sentinel lymph node and distant sites are still poorly understood and their elucidation should take major priority in cancer metastasis research.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1486
Author(s):  
Jenny de Castro de Castro Pinho ◽  
Reinhold Förster

Neutrophils are the first immune cells to be recruited from the blood to the tissue site of an infection or inflammation. It has been suggested that neutrophils are capable of migrating from the infected tissue via lymphatic vessels to the draining lymph nodes. However, it remains elusive as to which areas within the lymph nodes can be reached by such reversely migrating cells. To address this question, we applied a model for adoptive neutrophil transfer into the afferent lymphatic vessel that drains towards the popliteal lymph node in mice. We showed that resting and in vitro-activated neutrophils did not enter the lymph node parenchyma but localized primarily in the subcapsular and medullary sinuses. Within the medulla, neutrophils show random migration and are able to sense laser-induced sterile tissue injury by massively swarming to the damaged tissue site. Co-injected dendritic cells supported the entry of resting neutrophils into the lymph node parenchyma via the subcapsular sinus. In contrast, in vivo-activated adoptively transferred neutrophils were capable of migrating into the interfollicular areas of the lymph node. Collectively, the data presented here give further insights into the functional behavior of neutrophils within the lymph nodes.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 627
Author(s):  
Hengbo Zhou ◽  
Pin-ji Lei ◽  
Timothy P. Padera

Lymph nodes are the most common sites of metastasis in cancer patients. Nodal disease status provides great prognostic power, but how lymph node metastases should be treated is under debate. Thus, it is important to understand the mechanisms by which lymph node metastases progress and how they can be targeted to provide therapeutic benefits. In this review, we focus on delineating the process of cancer cell migration to and through lymphatic vessels, survival in draining lymph nodes and further spread to other distant organs. In addition, emerging molecular targets and potential strategies to inhibit lymph node metastasis are discussed.


Sign in / Sign up

Export Citation Format

Share Document