scholarly journals Landscape geochemical conditions and patterns of inter-element redistribution of heavy metals in landscapes of Kivertsi National Nature Park “Tsumanska Pushcha”

2021 ◽  
Vol 30 (1) ◽  
pp. 165-178
Author(s):  
Anastasiia O. Splodytel ◽  
Liudmyla Yu. Sorokina ◽  
Oksana V. Lunova

nalysis of landscape geochemical conditions of the territory of Kivertsi National Nature Park “Tsumanska Pushcha” was carried out also the levels of pollution of landscapes within the park and adjacent territories were established. Features of the accumulation and distribution of pollutants in the landscapes of the territory under conditions of natural and Technogenic geochemical anomalies are considered. The landscapes of the studied migration classes (calcium, calcium carbonate, carbonate clayey, acidic calcium) are characterized by a relatively high coefficient of migration intensity due to relatively weak buffering capacity, low water retention capacity and contrasting moisture regime. However, strong gleyed horizons are able to fix contaminants during their surface movement. Using the methods of landscape geochemical research, analytical methods, data on the gross and mobile content of heavy metals were obtained and analyzed. The highest concentrations of manganese and chromium are found in soils differentiated on loess sediments, nickel and copper on glacial sediments. Most of the studied heavy metals exceed the regional geochemical background. In terms of the gross content in soils, trace elements form the following geochemical series: Zn>Cu>Pb>Ni>Mn>Cr. The accumulation of lead up to 2-3 MPC in forest litters is clearly traced. Dependences of the stability of landscapes to Technogenic pollution on the level of conservation of natural geochemical parameters of soils, the degree of their anthropogenic transformation and the level of heavy metals incomings have been established. All studied plants maximally accumulated Mn, Cu, Cr and minimally Zn and Ti which is consistent with the patterns of migration of these elements in the soil. The high accumulation of heavy metals in the aboveground part of the studied plants indicates a significant removal of elements from the soil, which, in turn, makes it possible to consider certain plant species as potential phytoremediators. According to the average values of the concentration of macro elements in plants, the following geochemical series is established: CaO>K2O>MgO>P2O5>SiO2>SO3> Al2O3> Fe2O3>Na2O>TiO2. On the basis of the data obtained, 4 types of biogeochemical bonds between chemical elements in the soil – plant system for the territory of the NPP were identified: V, Ti - soil> plant; Ni - soil <plant; Cr - soil> plant; Mn, Cu - soil <plant.

Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 112 ◽  
Author(s):  
Agnieszka Karczmarczyk ◽  
Anna Baryła ◽  
Joanna Fronczyk ◽  
Agnieszka Bus ◽  
Józef Mosiej

Green roofs are constructions made of different layers, each serving a dedicated function. Substrates and materials used in their composition are essential from the point of view of rainwater retention and plant development, but they may have an adverse effect on runoff quality. Literature studies show that phosphorus and heavy metals are of main importance. The total roofs area covered with green increased in the last years in cities as they are efficient in retention of rainwater and delaying of the runoff, therefore, protecting the cities against floods. As green roofs filtrate a significant amount of rainwater, materials used in substrates composition should be carefully selected to protect urban receivers against pollution. The aim of this study was to assess phosphorus and heavy metals leaching from different green roof substrates and their components with the focus on green roof runoff quality. Both commercially made green roof substrates and often used compounds (construction aggregates) were tested in laboratory batch tests for P, Cu, Ni, Cd, and Zn content in extracts. Based on the results of this study, it could be emphasized that a large part of commonly used construction aggregates can be a source of phosphorus, some also can release elevated values of nickel. Therefore, the materials should be carefully tested before use in the green roof substrate composition, not only for their physical properties reflecting water retention capacity, but also for chemical composition.


2013 ◽  
Vol 448-453 ◽  
pp. 417-424
Author(s):  
Jie Chen ◽  
You Yang Wang ◽  
Jun Hui Wu ◽  
Hui Ping Si ◽  
Kai Yan Lin

This article discusses biochar adsorption and its effects on soil and discusses the future trends in this area. The large surface area, and many oxygen-containing functional groups of biochar determined by the feedstocks and the condition in pyrolysis affect the capacity of biochar to adsorb fertilizer, water, heavy metals and organic pollution. With enriched porous structures, biachar can increase the porosity and water retention capacity of soils. With the functional groups and the composition, biochar have a high adsorption capacity for fertilizer, heavy metals, organic pollutants. This paper provides an overview on the biochar sorption in fertilizer, heavy metals and organic pollutants in soil and its implication for soil to keep soil fertilizer as a controlled-released carrier and to improve soil environments as landscaping organic mulch, as well as for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment.


Purpose. The problem of environmental pollution by heavy metals is one of the most important problems of the present and the near future. The compounds of these elements are characterized by high toxicity, mobility and ability to bio-accumulation. The aim of the study was to establish the main regularities of trace elements of the national natural park (NNP), to determine the indicators of their mobility for assessment of state of environment.Scientific novelty. The article discusses the features of distributing of heavy metals in the components of landscapes of the territory of the national natural park for realization of control and settlement of his concentration in accordance with the set norms.Results. The analysis of the landscape-geochemical conditions of the territory of the national natural park “Nyzhniosulskyi” has been performed. Consistent patterns of heavy metals distribution in the modern soil of the territory of NNP “Nyzhniosulskyi” have been determined. The analysis of landscape-geochemical conditions of the territory indicates that they generally contribute to the migration of chemical elements with land runoff as well as their significant vertical redistribution. The differentiation of landscape-geochemical conditions causes the fixation and accumulation of a significant number of natural and man-made chemical elements on the landscape-geochemical barriers (mechanical, redox, acid-alkaline, sorption, sorption-gley). This prevents from intense pollution of the vast majority of landscape regions in the park by polluting substances migrating from agricultural lands, which is confirmed by the results of the analysis of pollution sources and volumes. It was shown, that processes of transformation and migration of heavy metals compounds in the soil profile are determined by physical and chemical properties of soils.The analysis of the content of heavy metals in the soils of NNP “Nyzhniosulskyi” has shown that , the distribution of heavy metals is uniformly dispersive, but the variations in the content of certain heavy metals can range from ± 7% to ± 25%-35%. The greatest bioaccumulation capacity is expressed in biogenic microelements – manganese and cuprum. The analysis of heavy metals content in the landscape regions of NNP “Nyzhniosulskyi” has confirmed its dependence on available sources of technogenic contamination as well as the high degree of compliance of the nature of heavy metals distribution to the general laws of these processes in the soils of the relevant types. Most heavy metals get into the Sulyn aquatorium mainly during spring flood with snow melt water. The excess of Cd2+, Cu2+ and Pb2+ in water has been noted in comparison with the current threshold level value regulations.According to the results of the landscape-geochemical analysis of the NNP “Nyzhniosulskyi”, it can be stated that the territory from the ecological point of view is poorly contaminated and can be used for the development of recreational activities in compliance with a number of requirements.Practical significance. The results of this study have been introduced into practice of the NNP “Nyzhniosulskyi” in organizing and conducting research work, for planning tourist and recreational activities, forming tourist routes, and organizing recreational infrastructure.


Author(s):  
N. G. Lyuta

The chemical composition of bottom sediments is an important indicator of the ecological state of both water systems and watershed areas, since contaminated bottom sediments are a potential source of secondary pollution of aquatic systems. The analysis of recent publications shows that great attention has been paid to the chemical composition of bottom sediments, however, as a rule, these studies are of a local nature, that is, they cover very small areas. This often raises the issue of criteria for assessing the ecological and geochemical status of bottom sediments, since a small number of samples does not allow correctly determining the local geochemical background. In addition, generally accepted norms, for example, the maximum allowable concentrations, do not exist for bottom sediments. In these conditions, data on regional geochemical backgrounds of pollutants are needed. The need for the implementation of the Water Framework Directive in Ukraine, which requires the introduction of water management basin-based, necessitates the determination of the geochemical characteristics of bottom sediments within the river basin territories. To study the distribution of heavy metals and determine their regional backgrounds in the bottom sediments, a database of environmental and geochemical information was used in the GIS, one of the blocks of which is information on the content of chemical elements and compounds in the bottom sediments of watercourses and water bodies of Ukraine, and the electronic map of river basins of Ukraine. Based on the analysis in the GIS of information on the chemical composition of the bottom sediments of the rivers of Ukraine (about 8,1 thousand samples), regional geochemical background of lead, zinc, copper, chromium, nickel and cobalt have been determined. The main regularities of distribution of chemical elements in bottom sediments in the territory of Ukraine are established. For the chemical elements in question, a gradual increase in their content in soils from north to south, that is, from the river basins of the Polissya zone to the basins of the Steppe landscape-climatic zone, is consistent with the geochemical features of the soil cover of the catchment areas. The increased background content of chemical elements in bottom sediments often spatially coincides with the spread of soil differences in the catchment areas, which also have a high content of these elements. The maximum background content of most heavy metals in bottom sediments is naturally clearly recorded within the Carpathian-Crimean metallogenic province. Thus, despite the long and intensive technogenic impact on the surface water bodies of Ukraine, it is necessary to note the priority of natural factors in the formation of the chemical composition of bottom sediments, at least for the heavy metals considered above.


2020 ◽  
Author(s):  
Mohamed M. Hanafi ◽  
Parisa Azizi ◽  
Abdul Rahim Sahibin ◽  
Idris Wan Mohd Razi ◽  
Ismail Aznan Fazli

Abstract BackgroundPredominant sandy, Beach Ridges Interspersed with Swales (BRIS) soil is a problematical soil for agriculture. It requires structure and capacity improvement due to its weak composition, low water retention capacity and high leaching of nutrients. However, there are hopes to improve it using different fertilizers in combination with organic matter. Phosphogypsum organic (PG organic) is an agricultural soil conditioner formulated from industrial by-products and organic filler material. This research was carried out to investigate the accumulated levels of heavy metals and radionuclides in water, soil and plants between BRIS soil under PG organic conditioner treatment and normal BRIS soil.ResultsThe result revealed that the PG organic’s particles are as similar to the reported pattern for calcium sulfate hydrate through powder X-ray diffraction (XRD). The heavy metals measured in the surface and borehole water, and soils were below the target values for raw drinking water and in the Dutch list, respectively. The values for biological accumulation coefficients, contamination factors, I-geo index and pollution load index (PLI) showed that there was no accumulation of metals in grain, no contamination and no pollution in the BRIS soil that received from the PG organic. Natural radioactivity concentrations, 226Ra (238U series), 228Ra (232Th series), and 40K in the collected samples were also measured. Naturally occurring radionuclide concentrations, such as 226Ra, 228Ra, and 40K, in soil and plant tissue were found to be lower than the average value reported by several earlier studies in Malaysia. There was no leaching of natural occurring radionuclides to the groundwater, nor was there discharge to the nearest river. The calculated radium equivalent (Raeq) in soil for this study was lower than the recommended value of 370 Bq/kg soil.ConclusionTherefore, the application of PG organic to the studied soil had no impact on the soil, plants and water and suitable as a soil conditioner in BRIS soil.


2020 ◽  
Vol 29 (3) ◽  
pp. 580-590
Author(s):  
Anastasiia O. Splodytel

Results of the study about pollutants content in soils of urbanized landscapes are presented. Patterns of their migration and accumulation in main soil types of Brovary are grounded. Correlation relationships between the individual components of ecologicalgeochemical system of urbanized territory were analyzed. Dependences of landscape resistance to technogenic pollution on the level of conservation of natural geochemical parameters of soils, degree of their anthropogenic transformation and level of heavy metals were determined. According to geochemical criteria technogenic associations of heavy metalsin soils are determined, which are represented by the following elements: Cu>Pb>Zn>Co>Cr>V>Mo>Mn>Ni. Level of gross content of chemical elements compounds in soils of different zones of the city is heterogeneous. City zones with the highest polyelement contamination of soil have been identified. Maximum technogenic load is recorded in urban areas of transport infrastructure zone and zone of production and communal-warehouse facilities. Ecological and geochemical assessment on the total index of pollution by using methods of Y.E. Saeta, is shown. Value of this topsoil parameter in Brovary (0-10 cm) ranges from 30 to 106, the average is 65, which corresponds to hazardous level of soil pollution. According to the total indicator of technogenic pollution, Brovary belongs to cities with high pollution level. Soils in all parts of the city, except for residential areas, are classified as hazardous. Studied soils of the city are characterized by plumbum geochemical specialization. High levels of zinc, manganese, cobalt and chromium were also found (the maximal permissible concentrations in soil exceeds by 1.7-4.7 times). Especial attention is paid to the patterns, mechanisms of pollutants influence on the complex of soil properties and processes that determine the ecological condition of soils and their resistance to anthropogenic flows. Soil contamination by pollutants leads to changes in their physical and chemical properties (cation exchange capacity pH, organic matter content) which causes a low buffering capacity of soil cover of the city.


2021 ◽  
pp. 32-52
Author(s):  
A.O. Splodytel ◽  
I.V. Kuraieva

The study presents the results of the spatial distribution of the heavy metal contents in separate components of the landscape of Kivertsi National Nature Park “Tsumanska Pushcha”. The article provides the quantitative indices of the heavy metals contents, which represent the intensity, character, and specificity of the accumulation in the soil horizons. Concentrations of the microelements fluctuate depending on the lithological type of deposits, their facies affiliation, and localization in the drainage basin. The contents of nickel, cobalt, lead, chromium, vanadium, manganese, and copper are characterized by significant divergence from their average concentrations, though it doesn’t exceed their estimated abnormal indices. Most of the studied heavy metals in the soil exceed the regional geochemical background. The biggest accumulation of copper and zinc is taking place in the forest floor, and the mineral part of the profile is lightly marked by alluvial and illuvial character. The contents of nickel, cobalt, and manganese are increasing with the depth with the accumulation of these elements, which are typical of the chemical contents of glacial deposits. The forest floor is distinctly playing the role of a barrier that prevents copper from penetration into the inner levels of occurring soil horizons. The paper defines the dependence of the heavy metal contents in plants of the national nature park on the level of technogenic load and characteristics of the soil covering of the territory. With the increase of the heavy metals in soil, they accumulate in plants. Though, with the distance from the source of contamination, the contents of the heavy metals in plants decrease by 10-20 mg/kg. The study of the most common plants, which grow on the soils of diverse mechanical contents, revealed that the plants which grow on sod-podzolic sandy soil display the biggest number of microelements, while those growing on bog soil and peat bogs. The main part of the exceeding background indices according to the elements has been found in sample areas westwards. All plants under research accumulated Mn, Cu, Cr to a maximal extent while Zn and Ti to a minimal extent, which is in accordance with elements migration of this group. The main directions of further research include the study of heavy metals distribution in diverse genetic types of the soils; definition of the standard contents of the elements in geochemical landscapes needed to identify the intensity of migration and character of elements distribution; performance of biochemical zoning.


2019 ◽  
Vol 2 (2) ◽  
pp. 115-120
Author(s):  
Karissha Fritzi Della ◽  
Mutiara Pratiwi ◽  
Purwa Tri Cahyana ◽  
Maria DPT Gunawan-Puteri

Fried food is convenient for many people due to its pleasant texture and taste. On the other hand, it comes with the risk of high oil absorption which might lead to certain health problems. Resistant starch (RS) has been known to have a functionality of reducing oil absorption. Three different types of banana: Kepok (Musa paradisiaca formatypica), Raja Bulu (Musa paradisiaca L.) and Ambon (Musa paradisiaca L. var sapientum) were evaluated on its performance when utilized as source of resistant starch especially on their application in reducing oil absorption in fried food. Tempeh was used as the food model. Banana starch (RS2) was isolated through water alkaline extraction process, continued with modification process through three repeated cycles of autoclaving-cooling process to obtain the RS3. RS3 was added into the batter coating formulation at three substitution ratios (10%, 30% and 50%) and then used to coat tempeh before frying. Evaluation of resistant starch in batter and battered productwas conducted on the following parameters: fat content, water retention capacity (WRC), coating pick up and sensory analysis. The result of this study revealed that Raja Bulu showed the most effective result on reducing oil absorption in the food tested. In the three bananas used, the ratio of 50% performed best in coating pick up (highest), WRC (highest) and fat content(lowest) parameters, but not significantly different with the 30% ratio. In terms of sensory acceptance, using Raja Bulu as the selected banana type, 30% of substitution ratio was significantly more preferable by the panelists in crispness, oiliness, and overall acceptance attributes compared to control and other substitution ratios.


2021 ◽  
Vol 11 (4) ◽  
pp. 1595
Author(s):  
Salvatore La China ◽  
Luciana De Vero ◽  
Kavitha Anguluri ◽  
Marcello Brugnoli ◽  
Dhouha Mamlouk ◽  
...  

Bacterial cellulose (BC) is receiving a great deal of attention due to its unique properties such as high purity, water retention capacity, high mechanical strength, and biocompatibility. However, the production of BC has been limited because of the associated high costs and low productivity. In light of this, the isolation of new BC producing bacteria and the selection of highly productive strains has become a prominent issue. Kombucha tea is a fermented beverage in which the bacteria fraction of the microbial community is composed mostly of strains belonging to the genus Komagataeibacter. In this study, Kombucha tea production trials were performed starting from a previous batch, and bacterial isolation was conducted along cultivation time. From the whole microbial pool, 46 isolates were tested for their ability to produce BC. The obtained BC yield ranged from 0.59 g/L, for the isolate K2G36, to 23 g/L for K2G30—which used as the reference strain. The genetic intraspecific diversity of the 46 isolates was investigated using two repetitive-sequence-based PCR typing methods: the enterobacterial repetitive intergenic consensus (ERIC) elements and the (GTG)5 sequences, respectively. The results obtained using the two different approaches revealed the suitability of the fingerprint techniques, showing a discrimination power, calculated as the D index, of 0.94 for (GTG)5 rep-PCR and 0.95 for ERIC rep-PCR. In order to improve the sensitivity of the applied method, a combined model for the two genotyping experiments was performed, allowing for the ability to discriminate among strains.


Sign in / Sign up

Export Citation Format

Share Document