scholarly journals Ambystoma mexicanum, a model organism in developmental biology and regeneration: a colombian experience

2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Melisa Hincapie Agudelo ◽  
Belfran Alcides Carbonell Medina ◽  
Claudia Marcela Arenas Gómez ◽  
Jean Paul Delgado

Ambystoma mexicanum is a urodele amphibian endemic to Xochimilco Lake in Mexico, it belongs to the salamander family Ambystomatidae. This species has frequently been used as model organism in developmental biology and regeneration laboratories around the world due to its broad regenerative capacities and adaptability to laboratory conditions. In this review we describe the establishment of the first colony of axolotls in Colombia to study tissue regeneration and our perspectives on the use A. mexicanum as a model organism in Colombia are discussed emphasizing its possible uses in regeneration and developmental biology

Author(s):  
Bilitis Désirée Vanicela ◽  
Martin Nebel ◽  
Marielle Stephan ◽  
Christoph Riethmüller ◽  
Götz Theo Gresser

AbstractThe identification of a model organism for investigations of fine dust deposits on moss leaflets was presented. An optical method with SEM enabled the quantitative detection of fine dust particles in two orders of magnitude. Selection criteria were developed with which further moss species can be identified in order to quantify the number of fine dust particles on moss surfaces using the presented method. Among the five moss species examined, B. rutabulum had proven to be the most suitable model organism for the method presented here. The number of fine dust particles on the moss surface of B. rutabulum was documented during 4 weeks of cultivation in the laboratory using SEM images and a counting method. The fine dust particles were recorded in the order of 10 μm–0.3 μm, divided into two size classes and counted. Under laboratory conditions, the number of particles of the fine fraction 2.4 μm–0.3 μm decreased significantly.


Author(s):  
W. Mark Saltzman

This book began with a reflection on the miracle of development, wherein a single cell transforms into a human. The transformation from fertilized egg to adult results from a complex tapestry of events, which scientists are only beginning to dissect and unravel. Certain processes occur frequently during development; that is, the tapestry is woven from threads of elemental colors and textures. A central assumption of subsequent chapters is that key concepts underlying tissue regeneration first appear during fetal development. The elements of developmental biology are presented in this chapter; more complete descriptions are available in any of several excellent textbooks. The relevance of developmental processes in the study of tissue engineering is detailed in subsequent chapters. One of the most intimidating aspects of developmental biology is the vocabulary; therefore, important words are indicated in small capitals on first occurrence and collected in a glossary at the end of the chapter. Developmental biology is an ancient science. One of the central concepts in developmental biology, EPIGENESIS, came from Aristotle in the fourth century B.C. Epigenesis is a continuous, stepwise process in which a simple initial structure becomes complex. Through much of history between Aristotle and the present, epigenesis was not widely accepted as operating in development; many scientists, particularly during the 17th and 18th centuries, were preformationists who believed that the structure of animals was preformed at conception. To the preformationist, the embryo begins as a small replica of an individual which changes only in size during the course of development. Preformationists differed as to whether the preformed individual resided in the ovum or the sperm, but they agreed that all of the attributes of an adult were present from the outset of development. Epigenesis is now well established and many of the steps underlying epigenesis are understood. Human development is part of a larger cyclic process; fertilized eggs develop into newborns who grow to adults and produce new eggs and sperm. This chapter will introduce some of the mechanisms underlying human development from egg to newborn.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 839 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
José María Senciales-González ◽  
José Damián Ruiz-Sinoga

In this Special Issue, we have tried to include manuscripts about soil erosion and degradation processes and the accelerated rates due to hydrological processes and climate change. We considered that the main goal was successfully reached. The new research focused on measurements, modelling, and experiments under field or laboratory conditions developed at different scales (pedon, hillslope, and catchment) were submitted and published. This Special Issue received investigations from different parts of the world such as Ethiopia, Morocco, China, Iran, Italy, Portugal, Greece and Spain, among others. We are happy to see that all papers presented findings characterized as unconventional, provocative, innovative and methodologically new. We hope that the readers of the journal Water can enjoy and learn about hydrology and soil erosion using the published material, and share the results with the scientific community, policymakers and stakeholders new research to continue this amazing adventure, featuring plenty of issues and challenges.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1211-1211 ◽  
Author(s):  
Teja F. Radke ◽  
Anja Buchheiser ◽  
Aurélie Lefort ◽  
Mahtab Maleki ◽  
Peter Wernet ◽  
...  

Abstract Generation and characterization of unrestricted somatic stem cells (USSC) from cord blood (CB) was described by our group and has been well established under laboratory conditions [Koegler et al 2004, 2005 and 2006; Sensken et al 2007]. Due to their proliferative and differentiation capacity, USSCs are an interesting candidate for the future development of cellular therapy for tissue repair and tissue regeneration as well as a supportive cell layer to support hematopoietic reconstitution. Since generation and expansion under GMP-grade conditions is mandatory for use in clinical application, the automated cell processing system Sepax (BIOSAFE) with the CS900 separation kit was used for mononuclear cell separation and the subsequent generation of the USSC colonies in the presence of 30% GMP-grade fetal calf serum (Perbio), low-glucose DMEM-medium/10-7M dexamethasone. Expansion of USSC was performed in a closed system (Macopharma) applying cell stacks (Costar Corning). Results achieved so far indicate that the generation frequency and quality of generated USSC under GMP conditions are equal or even superior (45%) to manual generation under laboratory conditions (43%). 20 cord-blood units (mean volume 88,5 +− 15,8 ml; mean number of mononuclear cells 3,1 +−0,6 *108 MNC) have been processed, resulting in 9 USSC-colony formations and lines within 14–28 days. Growth kinetics is equal to the previously established USSC-lines (∼36–48 h / population doubling). Analysis of the immunophenotype as well as the differentiation potential towards the mesenchymal, neural and endodermal lineages also showed no difference to those lines generated manually using Ficoll-separation and normal cell culture flasks (Costar Corning T225). The closed system applied here is perfectly suitable to ensure safe and easy handling of the USSC, including seeding, trypsination and harvesting. In combination with the cell stack system (1, 2, 5 and 10 layers), cell amounts of more than 1.0×109 USSC can be achieved within 4 passages. These USSC products were temperature controlled cryopreserved in the presence of 10% DMSO, HSA and dextran. USSC can be thawed and further expanded in clinical grade quality. On the basis of their pluripotency and expansion under GMP-conditions into large quantities, these USSC from cord blood, when pretested for infectious agents and matched for the major transplantation antigens, may serve as a universal allogeneic stem cell source for tissue repair and tissue regeneration.


Yeast ◽  
2006 ◽  
Vol 23 (13) ◽  
pp. 899-900 ◽  
Author(s):  
Jürg Bähler ◽  
Valerie Wood
Keyword(s):  

2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Francesca Fausti ◽  
Silvia Di Agostino ◽  
Andrea Sacconi ◽  
Sabrina Strano ◽  
Giovanni Blandino

First discovered in Drosophila, the Hippo pathway regulates the size and shape of organ development. Its discovery and study have helped to address longstanding questions in developmental biology. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the Yki protein (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation, survival, and apoptosis. A dysfunction of the Hippo pathway activity is frequently detected in human cancers. Recent studies have highlighted that the Hippo pathway may play an important role in tissue homoeostasis through the regulation of stem cells, cell differentiation, and tissue regeneration. Recently, the impact of RASSF proteins on Hippo signaling potentiating its proapoptotic activity has been addressed, thus, providing further evidence for Hippo's key role in mammalian tumorigenesis as well as other important diseases.


2018 ◽  
Author(s):  
Turan Demircan ◽  
Guvanch Ovezmyradov ◽  
Berna Yıldırım ◽  
İlknur Keskin ◽  
Ayse Elif İlhan ◽  
...  

AbstractAxolotl (Ambystoma mexicanum) is a critically endangered salamander species and a model organism for regenerative and developmental biology. Despite life-long neoteny in nature and in captive-bred colonies, metamorphosis of these animals can be experimentally induced by administering Thyroid hormones (THs). However, biological consequences of this experimental procedure, such as host microbiota response and implications for regenerative capacity, remain largely unknown. Here, we systematically compared host bacterial microbiota associated with skin, stomach, gut tissues and fecal samples based on 16S rRNA gene sequences, along with limb regenerative capacity, between neotenic and metamorphic Axolotls. Our results show that distinct bacterial communities inhabit individual organs of Axolotl and undergo substantial restructuring through metamorphosis. Drastic restructuring was observed for skin microbiota, highlighted by a major transition from Firmicutes-enriched to Proteobacteria-enriched relative abundance and precipitously decreased diversity. Remarkably, shifts in microbiota was accompanied by a steep reduction in limb regenerative capacity. Fecal microbiota of neotenic and metamorphic Axolotl shared relatively higher similarity, suggesting that diet continues to shape microbiota despite fundamental transformations in the host digestive organs. The results provide novel insights into microbiological and regenerative aspects of Axolotl metamorphosis and will establish a baseline for future in-depth studies.


2021 ◽  
Author(s):  
Pragya Topal ◽  
Divita Garg ◽  
Rajendra S. Fartyal

As drosophilids are versatile, low maintenance and non-harming model organisms, they can be easily used in all fields of life sciences like Genetics, Biotechnology, Cancer biology, Genomics, Reproductive biology, Developmental biology, Micro chemical studies, ecology and much more. For using such a model organism, we need to learn capturing, rearing and culturing their progeny along with basic identification and differentiation between males and females. This chapter is being emphasized on techniques of capturing these flies with different and effective techniques. Along with it, most species-specific baits are discussed to catch more yield. Culture food media, a set measurement of different ingredients is used to rear the collected sample. The reasons for using each ingredient are also discussed in this chapter. At last, this chapter highlights the basic clues to identify different species in the field and lab along with learning distinguishing characteristics of males and females easily and effectively.


2020 ◽  
Vol 13 (10) ◽  
pp. dmm047415

ABSTRACTFirst Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Gideon Hughes is first author on ‘Machine learning discriminates a movement disorder in a zebrafish model of Parkinson's disease’, published in DMM. Gideon conducted the research described in this article while a PhD student in Betsy Pownall's lab at the University of York, York, UK. He is now a postdoc in the lab of Henry Roehl at the University of Sheffield, Sheffield, UK, using the zebrafish as a model organism to study human disease and tissue regeneration, combining his research with his interest in computer science.


Sign in / Sign up

Export Citation Format

Share Document