scholarly journals Anti-candidal effect of endophytic fungi isolated from Calotropis gigantea

2017 ◽  
Vol 65 (4) ◽  
pp. 1437 ◽  
Author(s):  
Archana Nath ◽  
Santaram Joshi

Candida albicans is a most common cause of fungal infections in animals and birds. Understanding the increasing resistance of C. albicans to various antifungal therapeutic agents is important to discover new anti-candidal alternatives. The present study investigated the anti-candidalpotential of five endophytic fungi extracts, isolated from the tropical ethnoveterinary plant, Calotropis gigantea. We firstly evaluated the in vitro antifungal activities of endophytic fungi extracts by the well diffusion method. Secondly, the cells of C. albicans were treated with the potent extract to observe significant ultrastructural changes. To further investigate the in vivo antifungal activity of the extract, some laboratory experiments with mice were undertaken, and posteriourly, the different organs were studied under the electron microscope for any deformities. Phomopsis asparagi showed the best anti-candidal activity with a minimum inhibitory concentration (MIC) of 46.9 µg/mL. The fungal test pathogen (C. albicans) exhibited various cell deformities when treated with the extract of P. asparagi. Histopathological studies of the vital organs of mice treated with the potent fungal extract did not show any significant pathological conditions when viewed under scanning electron microscope. Thus, P. asparagi can be a potential candidate for anti-candidal agents against C. albicans. Future studies will focus on the isolation of the bioactive components of the extract.

Nutrients ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Author(s):  
Md Minarul Islam ◽  
Rashedul Alam ◽  
Hea-Jong Chung ◽  
Nazim Uddin Emon ◽  
Mohammad Fazlul Kabir ◽  
...  

Bauhinia scandens L. (Family: Fabaceae) is commonly used to treat cholera, diarrhea, asthma, and diabetes disorder in integrative medicine. This study aimed to screen the presence of phytochemicals (preliminary and UPLC-QTOF–M.S. analysis) and to examine the pharmacological activities of Bauhinia scandens L. stems (MEBS) stem extracts. Besides, in silico study was also implemented to elucidate the binding affinity and drug capability of the selected phytochemicals. In vivo anti diarrheal activity was investigated in mice models. In vitro, antibacterial and antifungal properties of MEBS against several pathogenic strains were evaluated using the disc diffusion method. In addition, in silico study has been employed using Discovery studio 2020, UCFS Chimera, PyRx autodock vina, and online tools. In the anti-diarrheal investigation, MEBS showed a significant dose-dependent inhibition rate in all three methods. The antibacterial and antifungal screening showed a remarkable zone of inhibition, of the diameter 14–26 mm and 12–28 mm, by MEBS. The present study revealed that MEBS has remarkable anti-diarrheal potential and is highly effective in wide-spectrum bacterial and fungal strains. Moreover, the in silico study validated the results of biological screenings. To conclude, MEBS is presumed to be a good source in treating diarrhea, bacterial and fungal infections.


2020 ◽  
Vol 10 (1) ◽  
pp. 116-122
Author(s):  
Nagwa Mohamed Ammar ◽  
Lamiaa Taha Abou El-Kassem ◽  
Nahla AbdelHamid Ayoub ◽  
Sherweit Hamed El-Ahmady ◽  
Maysa Elsayed Moharam ◽  
...  

Introduction: Rumex spp. have been used in folk medicine either as food or as medicine for the treatment of several diseases including constipation, fever, inflammation, bacterial and fungal infections. This study aimed to evaluate the anti-inflammatory and antimicrobial activities of the successive extracts of the aerial parts of Rumex pictus Forssk. growing in Egypt, and to identify the chemical constituents in the bioactive extract. Methods: Ether, chloroformic, and 70% methanolic extracts of the aerial parts of R. pictus were assayed for their in vivo anti-inflammatory activity using carrageenan-induced rat hind paw edema method. These extracts were also tested for their in vitro antibacterial and antifungal activities using disc diffusion method. Results: The 70% methanolic extract of R. pictus exhibited significant anti-inflammatory, antibacterial, and anti-candida activities. Thus, fractionation of the bioactive extract was performed which led to the isolation of three anthraquinones, as well as, seven flavonoids. Conclusion: Rumex pictus possesses anti-inflammatory and antimicrobial activities which reinforce its use in ethnomedicine.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3005
Author(s):  
Kanchan Bhardwaj ◽  
Ana Sanches Silva ◽  
Maria Atanassova ◽  
Rohit Sharma ◽  
Eugenie Nepovimova ◽  
...  

Conifers have long been recognized for their therapeutic potential in different disorders. Alkaloids, terpenes and polyphenols are the most abundant naturally occurring phytochemicals in these plants. Here, we provide an overview of the phytochemistry and related commercial products obtained from conifers. The pharmacological actions of different phytochemicals present in conifers against bacterial and fungal infections, cancer, diabetes and cardiovascular diseases are also reviewed. Data obtained from experimental and clinical studies performed to date clearly underline that such compounds exert promising antioxidant effects, being able to inhibit cell damage, cancer growth, inflammation and the onset of neurodegenerative diseases. Therefore, an attempt has been made with the intent to highlight the importance of conifer-derived extracts for pharmacological purposes, with the support of relevant in vitro and in vivo experimental data. In short, this review comprehends the information published to date related to conifers’ phytochemicals and illustrates their potential role as drugs.


2021 ◽  
Vol 7 (2) ◽  
pp. 113
Author(s):  
Anne-Laure Bidaud ◽  
Patrick Schwarz ◽  
Guillaume Herbreteau ◽  
Eric Dannaoui

Systemic fungal infections are associated with high mortality rates despite adequate treatment. Moreover, acquired resistance to antifungals is increasing, which further complicates the therapeutic management. One strategy to overcome antifungal resistance is to use antifungal combinations. In vitro, several techniques are used to assess drug interactions, such as the broth microdilution checkerboard, agar-diffusion methods, and time-kill curves. Currently, the most widely used technique is the checkerboard method. The aim of all these techniques is to determine if the interaction between antifungal agents is synergistic, indifferent, or antagonistic. However, the interpretation of the results remains difficult. Several methods of analysis can be used, based on different theories. The most commonly used method is the calculation of the fractional inhibitory concentration index. Determination of the usefulness of combination treatments in patients needs well-conducted clinical trials, which are difficult. It is therefore important to study antifungal combinations in vivo, in experimental animal models of fungal infections. Although mammalian models have mostly been used, new alternative animal models in invertebrates look promising. To evaluate the antifungal efficacy, the most commonly used criteria are the mortality rate and the fungal load in the target organs.


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Yangpeng Lu ◽  
Yanan Jia ◽  
Zihan Xue ◽  
Nannan Li ◽  
Junyu Liu ◽  
...  

Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.


2007 ◽  
Vol 6 (6) ◽  
pp. 931-939 ◽  
Author(s):  
Fang Li ◽  
Michael J. Svarovsky ◽  
Amy J. Karlsson ◽  
Joel P. Wagner ◽  
Karen Marchillo ◽  
...  

ABSTRACT Candida albicans is the leading cause of systemic fungal infections in immunocompromised humans. The ability to form biofilms on surfaces in the host or on implanted medical devices enhances C. albicans virulence, leading to antimicrobial resistance and providing a reservoir for infection. Biofilm formation is a complex multicellular process consisting of cell adhesion, cell growth, morphogenic switching between yeast form and filamentous states, and quorum sensing. Here we describe the role of the C. albicans EAP1 gene, which encodes a glycosylphosphatidylinositol-anchored, glucan-cross-linked cell wall protein, in adhesion and biofilm formation in vitro and in vivo. Deleting EAP1 reduced cell adhesion to polystyrene and epithelial cells in a gene dosage-dependent manner. Furthermore, EAP1 expression was required for C. albicans biofilm formation in an in vitro parallel plate flow chamber model and in an in vivo rat central venous catheter model. EAP1 expression was upregulated in biofilm-associated cells in vitro and in vivo. Our results illustrate an association between Eap1p-mediated adhesion and biofilm formation in vitro and in vivo.


2021 ◽  
Vol 18 ◽  
Author(s):  
Nayla Javed ◽  
Shakeel Ijaz ◽  
Naveed Akhtar ◽  
Haji Muhammad Shoaib Khan

Background: Arctostaphylos uva-ursi (AUU) being rich in polyphenols and arbutin is known to have promising biological activities and can be a potential candidate as a cosmaceutical. Ethosomes encourage the formation of lamellar-shaped vesicles with improved solubility and entrapment of many drugs including plant extracts. Objective: The objective of this work was to develop an optimized nanostructured ethosomal gel formulation loaded with AUU extract and evaluated for skin rejuvenation and depigmentation. Methods: AUU extract was tested for phenolic and flavonoid content, radical scavenging potential, reducing power activity, and in-vitro SPF (sun protection factor) estimation. AUU loaded 12 formulations were prepared and characterized by SEM (scanning electron microscopy), vesicular size, zeta potential, and entrapment efficiency (%EE). The optimized formulation was subjected to non-invasive in-vivo investigations after incorporating it into the gel system and ensuring its stability and skin permeation. Results: Ethosomal vesicles were spherical in shape and Zeta size, zeta potential, PDI (polydispersity index), % EE and in-vitro skin permeation of optimized formulation (F3) were found to be 114.7nm, -18.9mV, 0.492, 97.51±0.023%, and 79.88±0.013% respectively. AUU loaded ethosomal gel formulation was stable physicochemically and exhibited non-Newtonian behavior rheologically. Moreover, it significantly reduced skin erythema, melanin as well as sebum level and improved skin hydration and elasticity. Conclusion: A stable AUU based ethosomal gel formulation could be a better vehicle for phytoextracts than conventional formulations for cosmeceutical applications such as for skin rejuvenation and depigmentation etc.


2021 ◽  
Vol 11 (11) ◽  
pp. 1808-1818
Author(s):  
Xiuli Li ◽  
Jigang Wang ◽  
Xin Li ◽  
Xiaoqian Hou ◽  
Hao Wang ◽  
...  

In our current study, porous heparin-polyvinylpyrrolidone/TiO2 nanocomposite (HpPVP/TiO2) bandage were prepared via the incorporation of TiO2 into HpPVP hydrogels for biomedical applications such as burn infection. The effect of the HpPVP hydrogels and the nanoparticles of TiO2 composition on the functional group and the surface properties of the as-fabricated bandages were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometry (XRD). The presence of TiO2 nanoparticles created the internal structure of the HpPVP hydrogel that aids in a homogeneous porous structure, as indicated by the scanning electron microscope (SEM). The size distribution of the TiO2 nanoparticles was measured using a transmission electron microscope (TEM). The studies on the mechanical properties of the HpPVP hydrogel indicate that the addition of TiO2 nanoparticles increases its strength. The prepared HpPVP/TiO2 nanocomposite dressing has excellent antimicrobial activity were tested against bacterial species (Staphylococcus aureus and Escherichia coli) and has good biocompatibility against human dermal fibroblast cells (HFFF2) for biological applications. In addition, in vivo evaluations in Kunming mice exposed that the as-fabricated HpPVP/TiO2 nanocomposite bandages increased the wound curing and facilitated accelerate skin cell construction along with collagen development. The synergistic effects of the HpPVP/TiO2 nanocomposite hydrogel dressing material, such as its excellent hydrophilic nature, good bactericidal activity, biocompatibility and wound closure rate through in vivo test makes it a suitable candidate for burn infections.


1961 ◽  
Vol 16 (6) ◽  
pp. 1065-1070 ◽  
Author(s):  
Hadley L. Conn

In vitro and in vivo studies were made of the equilibrium distribution of radioxenon in various organs and tissues of the dog and the xenon uptake compared with a water standard. Tissue-blood partition coefficients were calculated. The radioxenon-hemoglobin association curve was determined for dog and human hemoglobin and methemoglobin. The uptake of radioxenon by blood, due in particular to xenon-hemoglobin affinity, was appreciably greater than uptake either by water or by most other body tissues. Fat and brain were notable exceptions. Consequently, tissue-blood partition coefficients were about eight for fat, one for brain, and significantly less than one for other tissues studied. Acceptable accuracy for blood flow determinations with a radioxenon inert gas diffusion method would seem to depend on the use of a partition coefficient correction in turn corrected at least for the existing hemoglobin concentration. The uptake of xenon by hemoglobin had the characteristics of a solubility or a quasi-solubility phenomenon. The problem of the nature of the interaction is apparently not resolved. Submitted on June 19, 1961


Sign in / Sign up

Export Citation Format

Share Document