Involvement of high-density lipoprotein in stimulatory effect of hormones supporting function of the bovine corpus luteum.

2003 ◽  
Vol 51 (1) ◽  
pp. 111-120 ◽  
Author(s):  
D. Skarżyński ◽  
J. Młynarczuk ◽  
J. Kotwica

The hypothesis that epinephrine (noradrenaline, NA) enhances utilisation of high-density lipoproteins (HDL) by bovine luteal cells and that this process involves phospholipase (PL) C and protein kinase (PK) C intracellular pathway was tested. Luteal cells from days 2-4, 5-10 or 11-17 of the oestrous cycle were pre-incubated for 20h. Subsequently DMEM/Ham's F-12 medium was replaced by fresh medium and the cells were treated for 6 h as follows: In Experiment I with HDL (5-75μg cholesterol per ml), NA, isoprenaline (ISO) or luteinising hormone (LH). In Experiment II cells were incubated for further 24h in deficient medium (without FCS) and next treated as in Experiment I. In Experiment III cells were stimulated with NA, ISO or LH alone and together with HDL. In Experiment IV cells were treated with PLC inhibitor (U-73122) or with PKC inhibitor (staurosporine) or stimulator (phorbol 12-myristrate 13-acetate) and with either NA, insulin or LH. Only luteal cells from days 5-10 of the cycle responded on HDL and β-mimetics (P<0.05). LH stimulated progesterone secretion from the luteal cells during all stages of the cycle (P<0.001). Cells incubated in deficient medium and supplemented with HDL secreted as much progesterone as those stimulated by LH in all stages of the cycle. Beta-mimetics were unable to enhance the stimulatory effect of HDL. Blockade of PLC had no influence on progesterone secretion from cells treated with either NA or LH, but this did impair the stimulatory effect of insulin (P<0.05). Similarly, blockade of PKC by staurosporine impaired (P<0.05) the effect of insulin only but not that observed after LH or NA treatment. We suggest that: (a) noradrenergic stimulation does not enhance utilisation of cholesterol from HDL for progesterone secretion; (b) the fasting of luteal cells seems to activate enzymes responsible for the progesterone synthesis; (c) effect of NA on progesterone secretion from luteal cells does not involve the PLC-PKC pathway.

1998 ◽  
Vol 83 (3) ◽  
pp. 983-991
Author(s):  
Salman Azhar ◽  
Louisa Tsai ◽  
Satyanarayana Medicherla ◽  
Yasmine Chandrasekher ◽  
Linda Giudice ◽  
...  

This study examines the ability of human high density lipoproteins (HDL3) to deliver cholesteryl esters to human granulosa cells and describes the selective cholesterol pathway by which this occurs. Luteinized cells obtained from subjects undergoing in vitro fertilization-embryo transfer procedures were incubated with native HDL3 (or radiolabeled or fluorescently labeled HDL cholesteryl esters) to determine whether cells from humans (in which HDL is not the primary circulating lipoprotein species) can nevertheless interiorize and appropriately process cholesteryl esters for steroidogenesis. The results indicate that hormone-stimulated granulosa cells actively and efficiently use human HDL-derived cholesterol for progesterone production. More than 95% of the mass of HDL cholesteryl esters entering cells does so through the nonlysosomal (selective) pathway, i.e. cholesteryl esters released from HDL are taken up directly by the cells without internalization of apoproteins. Once internalized, the cholesteryl esters are either hydrolyzed and directly used for steroidogenesis or stored in the cells as cholesteryl esters until needed. The utilization of the internalized cholesteryl esters is a hormone-regulated event; i.e. luteinized human granulosa cells internalize and store large quantities of HDL-donated cholesteryl esters when available, but further processing of the cholesteryl esters (hydrolysis, reesterification, or use in steroidogenesis) does not occur unless the cells are further stimulated to increase progesterone secretion.


2012 ◽  
Vol 48 (No. 10) ◽  
pp. 267-274
Author(s):  
J. Mlynarczuk ◽  
R. Amarowicz ◽  
J. Kotwica

The corpus luteum (CL), formed from the ruptured follicle, is required for the course of normal cyclicity and the duration of pregnancy in females. The influence of a mixture of polychlorinated biphenyls &ndash; PCBs (Aroclor-1248) &ndash; on the secretory function of CL (dispersed bovine luteal cells) during different stages of the estrous cycle was studied. The cells (1.2 &times; 105/ml) were pre-incubated for 24 h and were then treated with 10, 100 or 500 ng/ml of PCBs. A􀄞er 24, 48, 72, 96 or 144 h luteinizing hormone (LH; 100 ng/ml; positive control) was added to the medium. The most evident impaired secretion of progesterone was measured after 72 h of incubation with PCBs and this time was selected for the further experiments. In Exp. 2 high density lipoproteins (HDL), as a source of cholesterol (25 &mu;g), increased progesterone secretion from luteal cells; PCBs enhanced this effect in mid and late stage of the estrous cycle. PCBs had no effect on the stimulatory influence of LH, which itself stimulated progesterone secretion. In Exp. 3 PCBs (500 ng/ml) decreased progesterone secretion from the early CL and increased stimulatory effect of noradrenaline (NA) on progesterone secretion from mid CL. Aroclor-1248 stimulated oxytocin (OT) secretion from all stages of CL development. NA alone increased OT secretion from mid and late CL and moreover, it amplified effect by Aroclor on CL from all studied stages of their development. We conclude that the mixture of PCBs, commercially available as Aroclor-1248, can directly impair the function of bovine CL and thus it can affect the estrous cycle duration or embryo development.


2001 ◽  
Vol 49 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Grażyna Miszkiel ◽  
J. Kotwica

The present studies were conducted: (1) to determine which β-adrenoceptor subtypes are involved in progesterone and oxytocin (OT) secretion, (2) to examine whether noradrenaline (NA) acts directly on the cytochrome P-450scc and 3β-hydroxysteroid dehydrogenase (3β-HSD), and (3) to study the effect of prostaglandin F2α, (PGF2α) on NA-stimulated steroidogenesis in luteal cells. The effect of NA on progesterone secretion from luteal slices of heifers on days 8–12 of the oestrous cycle was blocked by both atenolol (β1-antagonist) and ICI 118.551 hydrochloride (β2-antagonist). OT secretion was blocked only after treatment with ICI 118.551 hydrochloride (P < 0.05). Dobutamine (10−4−10−6), a selective β1 agonist and salbutamol (10−4−10−6), a selective β2 agonist, both increased progesterone production (P < 0.01) with an efficiency comparable to that produced by NA (P < 0.01). The increase of OT content in luteal slices was observed only after treatment with salbutamol at the dose of 10−5M (P < 0.01). Dobutamine had no effect on OT production at any dose. A stimulatory effect of NA on cytochrome P-450scc activity (P < 0.05) was demonstrated using 25-hydroxycholesterol as substrate. 3β-HSD activity also increased following NA (P < 0.01) or pregnenolone (P < 0.05) and in tissue treated with pregnenolone together with NA (P < 0.01). PGF decreased progesterone synthesis (P < 0.05) and 3β-HSD activity (P < 0.01) in tissue treated with NA. We conclude that NA stimulates progesterone secretion by luteal β1- and β2-adrenoceptors, while OT secretion is probably mediated only via the β2-receptor. NA also increases cytochrome P-450scc and 3β-HSD activity. PGF inhibits the luteotropic effect of NA on the luteal tissue.


1983 ◽  
Vol 97 (3) ◽  
pp. 593-606 ◽  
Author(s):  
L G Paavola ◽  
J F Strauss

We have examined the uptake and distribution of 125I-labeled human high density lipoprotein, apolipoprotein E-free (hHDL3), 125I-rat high density lipoprotein (HDL), and human HDL (hHDL) reconstituted with [3H]cholesteryl linoleate after their in situ vascular perfusion to ovaries of gonadotropin-primed immature rats on days 6-9 post human chorionic gonadotropin (hCG)-injection. Some rats were treated with 4-aminopyrazolopyrimidine to reduce plasma lipoproteins and ovarian cholesteryl ester stores. Perfused ovaries were analyzed biochemically and autoradiographically, and progestin content of the ovarian effluent was quantified. Infusion of ovine luteinizing hormone and hHDL increased ovarian progestin secretion severalfold, indicating that the perfused ovary was functional. After perfusion with HDL reconstituted with [3H]cholesteryl linoleate, radioactive progestin appeared in the effluent; thus, sterol carried by exogenous HDL was converted to steroid. At 37 degrees C, uptake of 125I-hHDL3 was greatest after 15 min of perfusion with label. This was decreased by 80% when the perfusion was carried out at 4 degrees C and by 70-95% when excess unlabeled hHDL, but not human low density lipoprotein (hLDL), was included in the perfusate with 125I-hHDL. Aminopyrazolopyrimidine treatment enhanced 125I-hHDL uptake twofold. After perfusion for 15 min with 125I-hHDL3, radioactivity in the ovary was high for 3-30 min of HDL-free wash, then declined 75% by 30-60 min. With light and electron microscope autoradiography, 125I-hHDL3 was localized to corpora lutea, both along luteal cell surfaces and over their cytoplasm. The plasma membrane grains appeared to be associated with segments that lacked bristle coats. Perfusion with 125I-rat HDL produced a similar pattern of labeling. In ovaries perfused with 125I-BSA, silver grains were concentrated over macrophage-like cells but were sparse over luteal cells. We conclude that the in situ perfused rat ovary takes up 125I-hHDL3 by a temperature-dependent, lipoprotein-specific process, and that this lipoprotein is accumulated by luteal cells.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 857
Author(s):  
Josep Julve ◽  
Joan Carles Escolà-Gil

Epidemiological studies have shown that low levels of plasma high-density lipoprotein cholesterol (HDL-C) are associated with increased atherosclerotic cardiovascular disease (CVD) [...]


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 764
Author(s):  
Arianna Strazzella ◽  
Alice Ossoli ◽  
Laura Calabresi

Dyslipidemia is a typical trait of patients with chronic kidney disease (CKD) and it is typically characterized by reduced high-density lipoprotein (HDL)-cholesterol(c) levels. The low HDL-c concentration is the only lipid alteration associated with the progression of renal disease in mild-to-moderate CKD patients. Plasma HDL levels are not only reduced but also characterized by alterations in composition and structure, which are responsible for the loss of atheroprotective functions, like the ability to promote cholesterol efflux from peripheral cells and antioxidant and anti-inflammatory proprieties. The interconnection between HDL and renal function is confirmed by the fact that genetic HDL defects can lead to kidney disease; in fact, mutations in apoA-I, apoE, apoL, and lecithin–cholesterol acyltransferase (LCAT) are associated with the development of renal damage. Genetic LCAT deficiency is the most emblematic case and represents a unique tool to evaluate the impact of alterations in the HDL system on the progression of renal disease. Lipid abnormalities detected in LCAT-deficient carriers mirror the ones observed in CKD patients, which indeed present an acquired LCAT deficiency. In this context, circulating LCAT levels predict CKD progression in individuals at early stages of renal dysfunction and in the general population. This review summarizes the main alterations of HDL in CKD, focusing on the latest update of acquired and genetic LCAT defects associated with the progression of renal disease.


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Scott M Gordon ◽  
Catherine A Reardon ◽  
Godfrey S Getz ◽  
W S Davidson

High density lipoproteins (HDL) are a highly heterogeneous population of particles composed of various lipids and proteins. They have been demonstrated to possess a diverse variety of functional properties which are thought to contribute to protection against cardiovascular disease (CVD). Proteomics studies have identified up to 75 different proteins which can associate with HDL. The basis for the compositional diversity of HDL is not known but a better understanding will yield important information about its broad functional diversity. To investigate the impact of common HDL apolipoproteins on the distribution of other apolipoproteins, we have begun to systematically fractionate plasma from various HDL apolipoprotein KO mice. Plasma from apoA-I, apoA-IV and apoA-II global KO mice was applied to gel filtration chromatography to distinguish HDL size populations. HDL particles sequestered by a phospholipid binding resin were proteomically analyzed by electrospray ionization mass spectrometry. By comparing elution volume shifts (i.e. particle size variations) for each HDL protein between WT controls and the KO models, we assessed the impact of the deleted protein on HDL size distributions. Ablation of apoA-I, while decreasing total HDL phospholipid by 70%, had a surprisingly small impact on the distribution of the majority of other HDL associated proteins - affecting only 9 of them. Genetic apoA-IV ablation had a similar modest effect shifting a distinct subset of 9 proteins. However, loss of apoA-II, in addition to causing a similar 70% reduction in overall HDL phospholipids, affected the size distribution of some 45 HDL proteins (including several complement proteins and paraoxonase-1). These data suggest that apoA-I, while associated with the majority of HDL phospholipid, may actually interact with relatively few of the lower abundance proteins known to be associated with HDL. ApoA-II on the other hand, may interact with many of these, perhaps acting as a docking site or adaptor molecule.


Sign in / Sign up

Export Citation Format

Share Document