Correlative Nanomechanical Measurements for Complex Engineered Systems

MRS Advances ◽  
2016 ◽  
Vol 1 (12) ◽  
pp. 799-804 ◽  
Author(s):  
Eric D. Hintsala ◽  
Syed Asif ◽  
Douglas D. Stauffer

ABSTRACTMultilayered film stacks, with length scales less than 10 nm are commonly used in a variety of devices, but present significant challenges to mechanical testing and evaluation. This is due to property convolution of the different layers. Both the properties of the individual layers and the combined response of the film stack are important input for design optimization. Here, we present ex-situ nanoindentation of a film stack representative of a perpendicular magnetic recording (PMR) hard disc drive (HDD), with more than 10 layers. We then compare this with in-situ transmission electron microscopy indentation to visualize deformation of individual layers of the stack. The ex-situ testing reveals early plastic deformation, with an initially high contact pressure (13 GPa) and modulus ( >160 GPa), followed by significant softening (8 GPa contact pressure and 140 GPa modulus), then slight hardening to 9 GPa. From in-situ testing, it is revealed that the metallic layer directly under the diamond like carbon (DLC) contributes the majority of the deformation and plastic flow, which is in turn constrained by a metallic oxide.

Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


2017 ◽  
Vol 19 (31) ◽  
pp. 20867-20880 ◽  
Author(s):  
David C. Bock ◽  
Christopher J. Pelliccione ◽  
Wei Zhang ◽  
Janis Timoshenko ◽  
K. W. Knehr ◽  
...  

Crystal and atomic structural changes of Fe3O4upon electrochemical (de)lithiation were determined.


2020 ◽  
Vol MA2020-02 (24) ◽  
pp. 1750-1750
Author(s):  
Andrea Quintero Colmenares ◽  
Patrice Gergaud ◽  
Jean-Michel Hartmann ◽  
Vincent Delaye ◽  
Nicolas Bernier ◽  
...  

Microscopy ◽  
2018 ◽  
Vol 67 (2) ◽  
pp. 112-120
Author(s):  
Hiroyasu Saka ◽  
Hiroyuki Iwata ◽  
Daisuke Kawaguchi

Abstract Radiation of a permeable laser beam into Si induces considerable modification of structures. Thermal stability of the laser-induced modified volumes (LIMV’s) was studied comprehensively by means of in situ and ex situ heating experiments using transmission electron microscopy. The behavior in the tail region of a LIMV can be understood by dislocation theory, while that of a void formed at the very focus of a laser beam cannot be understood easily.


2000 ◽  
Vol 650 ◽  
Author(s):  
A. Meldrum ◽  
K. Beaty ◽  
L. A. Boatner ◽  
C. W. White

ABSTRACTIrradiation-induced amorphization of Cd2Nb2O7 pyrochlore was investigated by means of in-situ temperature-dependent ion-irradiation experiments in a transmission electron microscope, combined with ex-situ ion-implantation (at ambient temperature) and RBS/channeling analysis. The in-situ experiments were performed using Ne or Xe ions with energies of 280 and 1200 keV, respectively. For the bulk implantation experiments, the incident ion energies were 70 keV (Ne+) and 320 keV (Xe2+). The critical amorphization temperature for Cd2Nb2O7 is ∼480 K (280 keV Ne+) or ∼620 K (1200 keV Xe2+). The dose for in-situ amorphization at room temperature is 0.22 dpa for Xe2+, but is 0.65 dpa for Ne+ irradiation. Both types of experiments suggest a cascade overlap mechanism of amorphization. The results were analyzed in light of available models for the crystalline-to-amorphous transformation and were compared to previous ionirradiation experiments on other pyrochlore compositions.


2007 ◽  
Vol 15 (6) ◽  
pp. 38-39
Author(s):  
D. J. MacMahon ◽  
E. Raz-Moyal

Semiconductor manufacturers are increasingly turning to Transmission Electron Microscopes (TEMs) to monitor product yield and process control, analyze defects, and investigate interface layer morphology. To prepare TEM specimens, Focused Ion Beam (FIB) technology is an invaluable tool, yielding a standard milled TEM lamella approximately 15 μm wide, 5 μm deep and ~100 nm thick. Several techniques have been developed to extract these tiny objects from a large wafer and view it in the TEM. These techniques, including ex-situ lift-out, H-bar, and in-situ lift-out, have different advantages and disadvantages, but all require painstaking preparation of one specimen at a time.


Sign in / Sign up

Export Citation Format

Share Document