Superporous Intelligent Hydrogels for Environmentally Adaptive Building Skins

MRS Advances ◽  
2017 ◽  
Vol 2 (46) ◽  
pp. 2481-2488 ◽  
Author(s):  
Shane Ida Smith

ABSTRACTThis work explores responsive hydrophilic polymers for convergent functions of climate control with architectural material systems. In buildings, the transition across exterior and interior space occurs through the envelope, which is an enclosure system that mediates heat, light, air and moisture transfer functions. Conventional building envelopes are typically constructed to form a barrier that insulates and hermetically separates outdoor and indoor conditions. The dynamic environmental responses of superporous intelligent hydrogels are shown to be beneficial at the interior layer of a double-skin glazing system for building envelope applications. If the hydrogels are integral to the building envelope system, then various environmental functions (such as natural daylighting, heat transfer, airflow and moisture control) can be achieved through integrated actuators to result in improved building energy performance.The composite embodiments emulate bio-analytical functions when embedded microbore-tube water channels serve as actuators for swelling and deswelling kinetics respectively. Each prototype is conceived in response to hot-arid climate contexts. The prototype presented here is a lightweight ventilation cooling and daylighting system. Initial prototypes are inserted into an environmental test-bed that is consequently divided into two chambers to represent an outdoor and indoor condition. The input chamber includes controllable heat and light elements that affect the dynamics of the hydrogel system. The output chamber on the opposite side of the prototype division includes temperature, humidity and photo sensors that are connected to an Arduino board for data collection. Dependent upon the environmental conditions of chamber two, a control program actuates small hydro-pump to saturate the gels with water.The initial results provide correlations between mechanical (elasticity) and thermal (conductivity) properties. Current work in progress includes documentation of average rates for sorption-desorption kinetics and correlations between saturation loading and visible transmittance. The physical test data will also be integrated into building-scale energy performance simulations and hygrothermal transfer numerical analysis for building envelope compositions. The embedded material logic of the hydrogel is exploited in an architectural configuration for a convergence of prior building mechanical system and building envelope functions. The current work demonstrates a highly promising application of soft-skin membranes for much needed reductions in energy consumption within the building sector.

2021 ◽  
Vol 13 (8) ◽  
pp. 4175
Author(s):  
Islam Boukhelkhal ◽  
Fatiha Bourbia

The building envelope is the barrier between the interior and exterior environments. It has many important functions, including protecting the interior space from the climatic variations through its envelope materials and design elements, as well as reduction of energy consumption and improving indoor thermal comfort. Furthermore, exterior building sidings, in addition to their aesthetic appearance, can have useful textures for reducing solar gains and providing good thermal insulation performance. This research examined and evaluated the effect of external siding texture and geometry on energy performance. For this objective, a field in situ testing and investigation of surface temperature was carried out on four samples (test boxes) with different exterior textures and different orientations, under the climate zone of Constantine–Algeria during the summer period. The results indicated significant dependability between the exterior texture geometry, the percentage of shadow projected, and external surface temperature. The second part of the research involved a similar approach, exploring the effect of three types of particles with the same appearance but with different thermal characteristics. It was concluded that the natural plant aggregates “palm particles” had the best performance, which contributed to a significant reduction of external surface temperature reaching 4.3 °C, which meant decreasing the energy consumption.


2020 ◽  
Vol 15 (2) ◽  
pp. 233-244
Author(s):  
Kristóf Roland Horváth ◽  
István Kistelegdi

Abstract:First Hungarian Active House refurbishment won the Active House Award and the Energy Globe Hungary prize in 2017. This paper provides insight into the renewal design process of the typical home from the 70’s under disadvantageous site conditions. Dynamic thermal simulations helped to gain insight into space organization and building envelope concepts and their effects on comfort and energy performance. The Active House Standard was applied to evaluate the calculation results. The most advantageous concept was selected for final design elaboration and construction. The implemented building proved that in the refurbishment process it is possible to achieve highest level of efficiency in operation energy consumption with positive yearly balance by simultaneously being able to rearrange the complete interior space and as a consequence the building shape and envelope into a competitive design at international level.


2021 ◽  
Author(s):  
Ulrich Knaack ◽  
Jens Schneider ◽  
◽  

The building skin has evolved enormously over the past decades. The energy performance and environmental quality of both the interior and exterior of buildings are primarily determined by the building envelope. The façade has experienced a change in its role as an adaptive climate control system that leverages the synergies between form, material, mechanical and energy systems towards an architectural integration of energy generation. The PowerSKIN Conference aims to address the role of building skins to accomplish a carbonneutral building stock. The focus of the PowerSKIN issue 2021 deals with the question of whether simplicity and robustness stay in contradiction to good performance of buildings skins or whether they even complement each other: simplicity vs performance? As an international scientific event - usually held at the BAU trade fair in Munich - the PowerSKIN Conference builds a bridge between science and practice, between research and construction, and between the latest developments and innovations for the façade of the future. Topics such as building operation, embodied energy, energy generation and storage in the context of the three conference sessions envelope, energy and environment are considered: – Envelope: The building envelope as an interface for the interaction between indoor and outdoor environment. This topic is focused on function, technical development and material properties. – Energy: New concepts, accomplished projects, and visions for the interaction between building structure, envelope and energy technologies. – Environment: Façades or elements of façades, which aim to provide highly comfortable surroundings where environmental control strategies as well as energy generation and/or storage are an integrated part of an active skin. The Technical University of Munich, TU Darmstadt, and TU Delft are signing responsible for the organisation of the conference. It is the third event of a biennial series: April 9th 2021, architects, engineers, and scientists present their latest developments and research projects for public discussion and reflection. For the first time, the conference will be a virtual event. On the one hand, this is a pity, as conferences are also about meeting people and social interaction; on the other hand, it offers the possibility that we can reach more people who connect from all over the world.


2013 ◽  
Vol 9 (2) ◽  
pp. 9-19
Author(s):  
Florin Iordache ◽  
Iulian Clita ◽  
Arthur-Sebastian Klepş

Abstract The present paper thematically fits in the current concern for reducing energy consumption to ensure normal thermal comfort in residential and tertiary building heated spaces. Windows are an important area of the building envelope through which heat dissipates from the interior space to the exterior. As it is known the new insulating window types significantly reduce energy dissipation by both transmission and infiltration. This paper aims to establish the theoretical correlations that exist between different constructive functional parameters of insulating windows, such as gas or gases located between two or three window sheets and low-ε films to be applied on interior faces of the transparent elements. The theoretical work procedures as well as the tabulated and graphical results regarding the thermal resistances for various insulated window structures are presented. The results are analyzed in comparison with the values contained in the C107 regulation for building heat calculations.


2022 ◽  
Vol 14 (2) ◽  
pp. 666
Author(s):  
Sunil Kumar Sharma ◽  
Swati Mohapatra ◽  
Rakesh Chandmal Sharma ◽  
Sinem Alturjman ◽  
Chadi Altrjman ◽  
...  

Energy-efficient retrofits embrace enhancement of the building envelope through climate control strategies, employment of building-integrated renewable energy technologies, and insulation for a sustainable city. Building envelope improvements with insulation is a common approach, yet decision-making plays an important role in determining the most appropriate envelope retrofit strategy. In this paper, the main objective is to evaluate different retrofit strategies (RS) through a calibrated simulation approach. Based on an energy performance audit and monitoring, an existing building is evaluated on performance levels and improvement potentials with basic energy conservation measures. The considered building is experimentally monitored for a full year, and monitoring data are used in calibrating the simulation model. The validation of the base model is done by comparing the simulation analysis with the experimental investigation, and good agreement is found. Three different retrofit strategies based on Intervention of minor (RS1), Moderate (RS2), and Major (RS3) are analyzed and juxtaposed with the base model to identify the optimal strategy of minimizing energy consumption. The result shows that total energy intensity in terms of the percentage reduction index is about 16.7% for RS1, 19.87 for RS2, and 24.12% for RS3. Hence, RS3 is considered the optimal retrofit strategy and is further simulated for a reduction in carbon dioxide (CO2) emissions and payback investigation. It was found that the annual reduction in CO2 emissions of the building was 18.56%, and the payback period for the investment was 10.6 years.


2015 ◽  
Vol 19 (3) ◽  
pp. 845-856
Author(s):  
Aleksandar Rajcic ◽  
Ana Radivojevic ◽  
Martin Elezovic

As a side effect of the need for greater energy efficiency of buildings, there is a problem of decrease of the available interior space affected by the reduction in U-value of parts of thermal building envelope, i.e. an increase in thickness of insulating layer, which is especially present in unheated staircase. Having in mind that present methods of calculation of transmission heat losses through elements of thermal envelope include the adjustment factor which regulates designed temperature conditions if the temperature at the colder side of the element of the thermal envelope differs from that of the external environment, this paper strives to demonstrate that in the case of unheated staircases, this fixed value should be reconsidered and treated as a variable depending on the morphology, i.e. form, size and position of the staircase within the building. This problem has been analyzed on the example of Serbian housing stock and relevant national thermal regulations. Three morphological types of unheated staircases have been distinguished within which three models have been defined and examined with respect to variations in number of floors and percentage of glazing. Average temperatures of staircase volume and temperature correction factors were calculated in following temperature modes: stationary that excluded solar gains and ventilation heat losses and gains, and dynamic with variations in air exchange rates and insolation conditions, expressing in all of the cases variations in calculated values of temperature correction factors in comparison to the prescribed fixed value.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4180
Author(s):  
Joowook Kim ◽  
Michael Brandemuehl

Several building energy simulation programs have been developed to evaluate the indoor conditions and energy performance of buildings. As a fundamental component of heating, ventilating, and air conditioning loads, each building energy modeling tool calculates the heat and moisture exchange among the outdoor environment, building envelope, and indoor environments. This paper presents a simplified heat and moisture transfer model of the building envelope, and case studies for building performance obtained by different heat and moisture transfer models are conducted to investigate the contribution of the proposed steady-state moisture flux (SSMF) method. For the analysis, three representative humid locations in the United States are considered: Miami, Atlanta, and Chicago. The results show that the SSMF model effectively complements the latent heat transfer calculation in conduction transfer function (CTF) and effective moisture penetration depth (EMPD) models during the cooling season. In addition, it is found that the ceiling part of a building largely constitutes the latent heat generated by the SSMF model.


2020 ◽  
Vol 10 (13) ◽  
pp. 4489
Author(s):  
Zakaria Che Muda ◽  
Payam Shafigh ◽  
Norhayati Binti Mahyuddin ◽  
Samad M.E. Sepasgozar ◽  
Salmia Beddu ◽  
...  

The increasing need for eco-friendly green building and creative passive design technology in response to climatic change and global warming issues will continue. However, the need to preserve and sustain the natural environment is also crucial. A building envelope plays a pivotal role in areas where the greatest heat and energy loss often occur. Investment for the passive design aspect of building envelopes is essential to address CO 2 emission. This research aims to explore the suitability of using integral-monolithic structural insulation fibre-reinforced lightweight aggregate concrete (LWAC) without additional insulation as a building envelope material in a high-rise residential building in the different climatic zones of the world. Polypropylene and steel fibres in different dosages were used in a structural grade expanded clay lightweight aggregate concrete. Physical and thermal properties of fibre reinforced structural LWAC, normal weight concrete (NWC) and bricks were measured in the lab. The Autodesk@Revit-GBS simulation program was implemented to simulate the energy consumption of a 29-storey residential building with shear wall structural system using the proposed fibre-reinforced LWAC materials. Results showed that energy savings between 3.2% and 14.8% were incurred in buildings using the fibre-reinforced LWAC across various climatic regions as compared with traditional NWC and sand-cement brick and clay brick walls. In conclusion, fibre-reinforced LWAC in hot-humid tropical and temperate Mediterranean climates meet the certified Green Building Index (GBI) requirements of less than 150 kW∙h∙m−2. However, in extreme climatic conditions of sub-arctic and hot semi-arid desert climates, a thicker wall or additional insulation is required to meet the certified green building requirements. Hence, the energy-saving measure is influenced largely by the use of fibre-reinforced LWAC as a building envelope material rather than because of building orientation.


Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 152
Author(s):  
Karin Kompatscher ◽  
Rick P. Kramer ◽  
Bart Ankersmit ◽  
Henk L. Schellen

The majority of cultural heritage is stored in archives, libraries and museum storage spaces. To reduce degradation risks, many archives adopt the use of archival boxes, among other means, to provide the necessary climate control and comply with strict legislation requirements regarding temperature and relative air humidity. A strict ambient indoor climate is assumed to provide adequate environmental conditions near objects. Guidelines and legislation provide requirements for ambient indoor climate parameters, but often do not consider other factors that influence the near-object environment, such as the use of archival boxes, airflow distribution and archival rack placement. This study aimed to provide more insight into the relation between the ambient indoor conditions in repositories and the hygrothermal conditions surrounding the collection. Comprehensive measurements were performed in a case study archive to collect ambient, local and near-object conditions. Both measurements and computational fluid dynamics (CFD) modeling were used to research temperature/relative humidity gradients and airflow distribution with a changing rack orientation, climate control strategy and supply as well as exhaust set-up in a repository. The following conclusions are presented: (i) supplying air from one air handling unit to multiple repositories on different floors leads to small temperature differences between them. Differences in ambient and local climates are noticed; (ii) archival boxes mute and delay variations in ambient conditions as expected—however, thermal radiation from the building envelope may have a large influence on the climate conditions in a box; (iii) adopting night reduction for energy conservation results in an increased influence of the external climate, with adequate insulation, this effect should be mitigated; and (iv) the specific locations of the supply air and extraction of air resulted in a vertical gradient of temperature and insufficient mixing of air, and adequate ventilation strategies should enhance sufficient air mixing in combination with the insulation of external walls, and gradient forming should be reduced.


Sign in / Sign up

Export Citation Format

Share Document