Effect of the drying on morphology and texture of aerogels and zirconia cryogels

MRS Advances ◽  
2019 ◽  
Vol 4 (64) ◽  
pp. 3513-3521
Author(s):  
Tzipatly A. Esquivel-Castro ◽  
Antonia Martínez-Luévanos ◽  
Luis Alfonso García-Cerda ◽  
Juan C. Contreras-Esquivel ◽  
Pascual Bartolo Pérez ◽  
...  

ABSTRACTDue to their excellent properties, aerogel has attracted the attention of the scientific community to use it in the biomedical area as a drug delivery system. This work reports on the synthesis and characterization of ZrO2 aerogels and cryogels obtained by the sol-gel method. The influence of different cetyltrimethylammonium bromide (CTAB) and the type of drying on structural, morphological and texture properties of ZrO2 aerogels and cryogels was investigated. SEM images reveal that a porous interconnected three-dimensional network was formed into aerogels due to supercritical drying. Zirconia aerogel sample has a specific surface area (SBET) larger than zirconia cryogels. Therefore, our results indicate that zirconia aerogel is an adequate material for applications in drug delivery systems.

Author(s):  
Yinan Tian ◽  
Yung C. Shin ◽  
Galen B. King

Two-photon polymerization is a powerful technique in fabricating three dimensional sub-diffraction-limited structures. Recently, new sol-gel material, SZ2080, was introduced into two-photon polymerization and was proved to be better than the conventional materials for its negligible shrinkage. In this paper, two-photon polymerization was applied to generate woodpile structures, one kind of photonic crystal, using SZ2080. First, the relationship between scanning speed, laser power and resolution was determined through fabricating free-hanging lines. Based on this relationship, woodpile structures with different period distances were fabricated with high uniformity as shown by SEM images. Then optical properties of woodpile structures were investigated using Fourier Transform Infrared Spectroscopy (FTIR) and a quantitative relationship between band gap and period distance was established.


1992 ◽  
Vol 271 ◽  
Author(s):  
Christophe Roger ◽  
M. J. Hampden Smith ◽  
C. J. Brinker

ABSTRACTSol-gel type hydrolysis and condensation has been studied extensively as a method for the control of evolution of microstructure in the formation of inorganic silicates. However, in non silicate systems, the same level of control of microstructural evolution has yet to be demonstrated. In this work, we report the synthesis of mixed ligand tin (IV) alkoxide complexes specifically designed to undergo sequential hydrolysis reactions, where, as a result, control over porosity of the final metal oxide network is expected. A series of tin (IV) alkoxide compounds modified with difunctional carboxylate ligands as templates has been prepared with internuclear tin separations that are determined by the length of the bridging carboxylate group. The first hydrolysis step consists of the removal of the alkoxide ligands to create a three-dimensional network of oxo-bridged tin carboxylate species. In the second step, the bridging groups are removed by acid hydrolysis to leave pores without creating new Sn-O-Sn bonds. The synthesis and characterization of these species and the connection between pore structure (i.e. micro- vs. meso- porosity) as a function of the dimensions of the bridging ligands will be reported.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1841
Author(s):  
Kang Li ◽  
Xuejie Zhang ◽  
Yan Qin ◽  
Ying Li

Aerogels have been widely used in the adsorption of pollutants because of their large specific surface area. As an environmentally friendly natural polysaccharide, cellulose is a good candidate for the preparation of aerogels due to its wide sources and abundant polar groups. In this paper, an approach to construct cellulose nanofibers aerogels with both the good mechanical property and the high pollutants adsorption capability through chemical crosslinking was explored. On this basis, TiO2 nanoparticles were loaded on the aerogel through the sol-gel method followed by the hydrothermal method, thereby the enriched pollutants in the aerogel could be degraded synchronously. The chemical cross-linker not only helps build the three-dimensional network structure of aerogels, but also provides loading sites for TiO2. The degradation efficiency of pollutants by the TiO2@CNF Aerogel can reach more than 90% after 4 h, and the efficiency is still more than 70% after five cycles. The prepared TiO2@CNF Aerogels have high potential in the field of environmental management, because of the high efficiency of treating organic pollutes and the sustainability of the materials. The work also provides a choice for the functional utilization of cellulose, offering a valuable method to utilize the large amount of cellulose in nature.


Author(s):  
Rayya A. Al Balushi ◽  
Muhammad S. Khan ◽  
Md. Serajul Haque Faizi ◽  
Ashanul Haque ◽  
Kieran Molloy ◽  
...  

In the crystal structure of the title compound, [Cu4Cl6O(C13H9N)4]·CH2Cl2, the core molecular structure consists of a Cu4 tetrahedron with a central interstitial O atom. Each edge of the Cu4 tetrahedron is bridged by a chlorido ligand. Each copper(II) cation is coordinated to the central O atom, two chlorido ligands and one N atom of the 4-phenylethynylpyridine ligand. In the crystal, the molecules are linked by intermolecular C—H...Cl interactions. Furthermore, C—H...π and π–π interactions also connect the molecules, forming a three-dimensional network. Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H...H and C...H/H...C interactions.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 259
Author(s):  
Natalia Pawlik ◽  
Barbara Szpikowska-Sroka ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Wojciech A. Pisarski

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol–gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol–gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6–3)) and Eu3+ (5D0 → 7FJ (J = 0–4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Houda Marouani ◽  
Salem Slayyem Al-Deyab ◽  
Mohamed Rzaigui

Single crystals of [2-CH3CH2C6H4NH3]6P6O18⋅4H2O are synthesized in aqueous solution by the interaction of cyclohexaphosphoric acid and 2-ethylaniline. This compound crystallizes in the monoclinic system with P21/c space group the unit cell dimensions are: a=16.220(4) Å, b=10.220(5) Å, c=20.328(4) Å, β=113.24(3)∘, Z=2, and V=3096.5(18) Å3. The atomic arrangement can be described by layers formed by cyclohexaphosphate anions P6O186− and water molecules connected by hydrogen bonds O–H⋯O. These inorganic layers are developed around bc planes at x=1/2 and are interconnected by the H-bonds created by ammonium groups of organic cations. All the hydrogen bonds, the van der Waals contacts and electrostatic interactions between the different entities give rise to a three-dimensional network in the structure and add stability to this compound. The thermal behaviour and the IR spectroscopic studies of this new cyclohexaphosphate are discussed.


2021 ◽  
Vol 12 (4) ◽  
pp. 2523-2529
Author(s):  
Daniel Sam N ◽  
Anish C I ◽  
Sabeena G ◽  
Rajaduraipandian S ◽  
Manobala ◽  
...  

Sol gel methods were used for the study of the antimicrobial activity of Cd-TiO2 against gram-negative and positive bacteria. These Cd-TiO2 have been characterized by various optical and techniques. They have been exhibited by X-ray diffraction, scanning electron microscopy, ultraviolet spectroscopy, and infrared spectroscopy. The structures of the various XRD patterns indicate that the product has a structure. The particle size of Cd-TiO2 is 35nm. The SEM images confirm the spherical appearance of the sample. The energy X-ray spectra have been confirmed as well and then C, O, Ti, Cd, Pt element are present in Cd-TiO2. The weight percentage of Cadmium is 5.8%, Ti is 51.03%, C is 5.13% and O is 31.75% in Cd-TiO2. BET image shows that the major pore size distribution of Cd-TiO2 is ranged from 2.24 nm. The Cd-TiO2 that the antibacterial activity when tested against the pathogens only gram-negative bacteria such as Pseudomonas. The zone of minimum inhibition concentration was measured in a range of 20mm in 25μl and 30mm in 100μl.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Abraham Muñoz-Ruíz ◽  
Diana M. Escobar-García ◽  
Mildred Quintana ◽  
Amaury Pozos-Guillén ◽  
Héctor Flores

Scaffolds have been used as extracellular matrix analogs to promote cell migration, cell attachment, and cell proliferation. The use of aerogels and carbon-based nanomaterials has recently been proposed for tissue engineering due to their properties. The aim of this study is to develop a highly porous collagen-alginate(-graphene oxide) aerogel-based scaffold. The GO synthesis was performed by Hummers method; a collagen-alginate and collagen-alginate-GO hydrogel were synthetized; then, they were treated by a supercritical drying process. The aerogels obtained were evaluated by SEM and FTIR. Osteoblasts were seeded over the scaffolds and evaluated by SEM. According to the characterization, the aerogels showed a highly porous interconnected network covered by a nonporous external wall. According to the FTIR, the chemical functional groups of collagen and GO were maintained after the supercritical process. The SEM images after cell culture showed that a collagen-alginate scaffold promotes cell attachment and proliferation. The alginate-collagen aerogel-based scaffold could be a platform for tissue engineering since it shows adequate properties. Further studies are needed to determine the cell interactions with GO.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
S. Çetinkaya ◽  
H. A. Çetinkara ◽  
F. Bayansal ◽  
S. Kahraman

CuO interlayers in the CuO/p-Si Schottky diodes were fabricated by using CBD and sol-gel methods. Deposited CuO layers were characterized by SEM and XRD techniques. From the SEM images, it was seen that the film grown by CBD method is denser than the film grown by sol-gel method. This result is compatible with XRD results which show that the crystallization in CBD method is higher than it is in sol-gel method. For the electrical investigations, current-voltage characteristics of the diodes have been studied at room temperature. ConventionalI-Vand Norde’s methods were used in order to determine the ideality factor, barrier height, and series resistance values. It was seen that the morphological and structural analysis are compatible with the results of electrical investigations.


2003 ◽  
Vol 58 (1) ◽  
pp. 151-154 ◽  
Author(s):  
Rosa Carballo ◽  
Berta Covelo ◽  
Ezequiel M. Vázquez-Lópeza ◽  
Alfonso Castiñeiras ◽  
Juan Niclós

Abstract A new mixed-ligand complex of copper(II) with 1,10-phenanthroline and 2-methyllactate was prepared. [Cu(HmL)2(phen)] ·2H2O (where HmL = monodeprotonated 2-methyllactic acid) was characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements at room temperature, thermogravimetric analysis and X-ray diffractometry. The copper atom is in a tetragonally distorted octahedral environment and the 2-methyllactato ligand is bidentately chelating. The presence of lattice water molecules mediates the formation of a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document