Multifunctional hybrid sol-gel coatings for Marine Renewable Energy Applications: Synthesis, Characterization and Comparative Analysis with Organically Modified Silicon Precursor Coatings

MRS Advances ◽  
2020 ◽  
Vol 5 (33-34) ◽  
pp. 1757-1764
Author(s):  
Manasa Hegde ◽  
Yvonne Kavanagh ◽  
Brendan Duffy ◽  
Edmond F. Tobin

ABSTRACTHybrid coatings for cavitation erosion protection of aluminum alloys, have been developed, based on a sol-gel process and applied by the dip coating technique. This work aims to investigate established hybrid sol-gel coatings synthesized using organically modified silicon precursor 3-methacryloxypropyltrimethoxysilane (MAPTMS) mixed with zirconium (IV) propoxide. In the present research, the established baseline coatings were modified by adding different concentrations (1%, 1.5% and 2%) of cross-linkable hexamethylenediisocyanate (HMDI) diluted in 60% ethanol. The influences of the amount of crosslinker incorporated into the coatings on abrasion, corrosion and cavitation erosion protection were studied. The hydrophobic nature, thermal and electrochemical properties of the coatings were evaluated using Water Contact Angle (WCA), Differential Scanning Calorimetry (DSC), Open Circuit Potential (OCP) and Potentiodynamic polarization (PDS) techniques. Furthermore, cavitation erosion and abrasion tests were completed on all coatings and rankings of these were produced based on mass loss measurements and derived mean depth of erosion.

2021 ◽  
Vol 11 (22) ◽  
pp. 11044
Author(s):  
Violeta Purcar ◽  
Valentin Rădițoiu ◽  
Alina Rădițoiu ◽  
Florentina Monica Raduly ◽  
Georgiana Cornelia Ispas ◽  
...  

In this research, we report a simple and inexpensive way to prepare transparent and hydrophobic hybrid coatings through deposition of different silica materials on polyvinyl chloride (PVC) substrates. The silica materials were prepared using an acid-catalyzed sol–gel method at room temperature (25 ± 2 °C), using alkoxysilanes: tetraethoxysilane (TEOS), as the silica source, and ethoxydimethylvinylsilane (DMVES), triethoxyoctylsilane (OTES), and trimethoxyhexadecylsilane (HDTMES), as modifier agents. The obtained materials were characterized (either as powders or as thin films) by Fourier-transform infrared spectroscopy (FTIR), UV/Vis spectroscopy, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), atomic force microscopy (AFM), spectroscopic ellipsometry (SE), and water contact-angle measurements. UV/Vis spectra showed that the PVC substrate coated with the silica material containing TEOS/DMVES/OTES had a transmittance of about 90% in the wavelength range of 650–780 nm. The water contact angles increased from 83° for uncoated PVC substrate to ~94° for PVC substrates coated with the sol–gel silica materials. These PVC films with hybrid silica coatings can be used as the materials for outdoor applications, such as energy-generating solar panel window blinds or PVC clear Windmaster outdoor blinds.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Rezaee ◽  
Gh. R. Rashed ◽  
M. A. Golozar

Sol-gel 8 wt.% Yttria Stabilized Zirconia (YSZ) thin films were prepared on zirconium (zircaloy-4 alloy) by dip-coating technique followed by heat treating at various temperatures (200°C, 400°C, and 700°C) in order to improve both electrochemical corrosion and high temperature oxidation properties of the substrate. Differential thermal analysis and thermogravimetric analysis (DTA-TG) revealed the coating formation process. X-ray diffraction (XRD) was used to determine the crystalline phase structure transformation. The morphological characterization of the coatings was carried out using scanning electron microscopy (SEM). The electrochemical behavior of the coated and uncoated samples was investigated by means of open circuit potential, Tafel, and electrochemical impedance spectroscopy (EIS) in a 3.5 wt.% NaCl solution. The homogeneity and surface appearance of coatings produced was affected by the heat treatment temperature. According to the corrosion parameters, the YSZ coatings showed a considerable increase in the corrosion resistance, especially at higher heat treatment temperatures. The coating with the best quality, from the surface and corrosion point of view, was subjected to oxidation test in air at 800°C. The coated sample presented a 25% reduction in oxidation rate in comparison with bare substrate.


2012 ◽  
Vol 16 ◽  
pp. 1-7
Author(s):  
Nazanin Farhadyar ◽  
Mirabdullah Seyed Sadjadi

In this paper, we report preparation of hydrophilic hybrid nanocomposite coatings on glass substrates using Zinc acetate solutions based on 3-glycidoxypropyltrimethoxysilane (GPTMS), epoxy resin, aromatic amine (HY850), polyethylene glycol (PEG) and surfactant (polyoxyethylene(4)laurylether) by the sol-gel process. Furthermore, the effects of PEG addition to the precursor solutions on the hydrophilic property and microstructure of the resultant coating film were studied. The hydrophilic behavior study of the synthesized hybrid was performed by adding different amounts of polyethylene glycol precursor to the hybrid solution. Experimental results show that, among different amounts of PEGs, the best results are obtained by addition of PEGs (400) to the hybrid solution which can decrease the water contact angles down to 16 and using surfactant down to 0, and increase the free surface energy. Coated glass exhibits a higher strength than uncoated glass. Attenuated total reflectance infrared spectroscopic (ATR-IR) technique was used to characterize the structure of the hybrid films. The chemical structure of obtained network affects morphology of the coating. The morphology of the hybrid coatings was examined by transmission electron microscopy (TEM). The hybrid systems have a unit form structure and the inorganic phases were in the nanosize scale,


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


2013 ◽  
Vol 537 ◽  
pp. 234-237
Author(s):  
Di Fa Xu ◽  
Hai Bo Wang ◽  
Xiang Chao Zhang ◽  
Shi Ying Zhang

The S+Ce co-doped TiO2 nanocomposite films deposited on glass substrate had been synthesized by the sol–gel dip-coating method. The as-synthesized samples were characterized using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) absorption spectra analysis technologies. The surface morphology and surface chemical composition of the S+Ce co-doped TiO2 nanocomposite film had been primarily investigated. The results shows that the properties of doped TiO2 thin films with different ions have close relations with the intrinsical properties of S and Ce doped ions, the absorption edge shifted towards visible light region and the water contact angle of the surface of the nanocomposite films with the water droplet was only 6°, indicating that the S+Ce co-doped TiO2 nanocomposite film showed promising applications in the self-cleaning and other potential fields.


2012 ◽  
Vol 512-515 ◽  
pp. 1032-1035 ◽  
Author(s):  
Ya Wei Hu ◽  
Hui Rong He ◽  
Yang Min Ma

Nano-structured TiO2 coating was constructed through sol-gel process and dip-coating method on the stainless steel surface using tetra-n-butyl titanate as precursor. The phase and the crystallographic structure of the TiO2 coating were characterized by an X-ray diffractometer (XRD), and the surface topography and structures of the TiO2 coating were characterized by a scanning electron microscope (SEM). The superhydrophobic property of the TiO2 coating modified with the fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3) was characterized by the water contact angles. It was observed that the TiO2 coating showed superhydrophobicity with water contact angle 155.3° after modifying with FAS, and the superhydrophobicity was corrosion-resistance.


2017 ◽  
Vol 57 (6) ◽  
pp. 478-484 ◽  
Author(s):  
Michelina Catauro ◽  
Ferdinando Papale ◽  
Giusi Piccirillo ◽  
Flavia Bollino

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Fatima-tuz-Zahra ◽  
M. Anis-ur-Rehman

Polymeric nanofibers have been produced in the last few years by electrospinning of polymer solutions. Polyvinyl alcohol (PVA) was the selected polymer for the preparation of nanofibers. Processing parameters like flow rate, needle gauge, needle to collector distance, and molarity of the solution have been optimized during electrospinning process. Sol-gel method has been used for the preparation of thermoelectric cobaltite nanoparticles having composition NaCoO2. Sol-gel combined electrospinning technique was used to prepare the composites of the NaCoO2 with PVA nanofibers. X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) have been used for the structural analysis of the prepared samples. Scanning electron microscopy (SEM) was used to observe the morphology of the prepared fibers. SEM micrographs showed that, by increasing the flow rate, diameter of the fibers increased from 185 nm to 200 nm. Two-probe method and Advantageous Transient Plane Source (ATPS) were used to study the electrical and thermal transport properties, respectively. Thermal conductivity and electrical conductivity showed a direct dependence on temperature. It was observed that particles, sample has lower thermal conductivity (0.610 W/m-K) as compared to that of composite nanofibers (1.129 W/m-K). The measurements reported are novel and are useful for energy applications.


2012 ◽  
Vol 512-515 ◽  
pp. 1028-1031 ◽  
Author(s):  
Ya Wei Hu ◽  
Hui Rong He ◽  
Yang Min Ma

Nano-structrued SiO2 coating was prepared on metal substrate by sol-gel processing and the dip-coating technique using tetraethyl orthosilicate (TEOS) as precursor. And the superhydrophobicic SiO2 coating was obtained after modified with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3). The morphology of obtained SiO2 coating was characterized by scanning electronic microscope (SEM). And the superhydrophobicity of SiO2 coating modified with FAS was characterized by contact angle meter. It was observed that the SiO2 coating showed superhydrophobicity with water contact angle 154.7° after modified with fluoroalkylsilane, and the superhydrophobicity was corrosion-resistance to acid or alkali to some extant.


Sign in / Sign up

Export Citation Format

Share Document