Preparation of Superhydrophobic SiO2 Coating on Stainless Steel Substrate

2012 ◽  
Vol 512-515 ◽  
pp. 1028-1031 ◽  
Author(s):  
Ya Wei Hu ◽  
Hui Rong He ◽  
Yang Min Ma

Nano-structrued SiO2 coating was prepared on metal substrate by sol-gel processing and the dip-coating technique using tetraethyl orthosilicate (TEOS) as precursor. And the superhydrophobicic SiO2 coating was obtained after modified with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3). The morphology of obtained SiO2 coating was characterized by scanning electronic microscope (SEM). And the superhydrophobicity of SiO2 coating modified with FAS was characterized by contact angle meter. It was observed that the SiO2 coating showed superhydrophobicity with water contact angle 154.7° after modified with fluoroalkylsilane, and the superhydrophobicity was corrosion-resistance to acid or alkali to some extant.

2011 ◽  
Vol 148-149 ◽  
pp. 534-537
Author(s):  
Chun Xiang Gao

A very effective approach to improve the oxidation resistance of Ti-6Al-4V alloy was proposed. The Ti-6Al-4V alloy was firstly phosphated and then coated by silica using sol-gel dip-coating technique. A duplex layer of TiP2O7 and amorphous silica was synthesized at the alloy surface. The isothermal and cyclic oxidation behavior of the treated alloy with silica coating and the corresponding bare alloy was investigated at 600 oC in static air to investigate the synergetic effect of phosphorization and amorphous SiO2 coating on the oxidation resistance of the alloy. The isothermal and cyclic oxidation resistances of the alloy were greatly improved.


2012 ◽  
Vol 512-515 ◽  
pp. 1032-1035 ◽  
Author(s):  
Ya Wei Hu ◽  
Hui Rong He ◽  
Yang Min Ma

Nano-structured TiO2 coating was constructed through sol-gel process and dip-coating method on the stainless steel surface using tetra-n-butyl titanate as precursor. The phase and the crystallographic structure of the TiO2 coating were characterized by an X-ray diffractometer (XRD), and the surface topography and structures of the TiO2 coating were characterized by a scanning electron microscope (SEM). The superhydrophobic property of the TiO2 coating modified with the fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3) was characterized by the water contact angles. It was observed that the TiO2 coating showed superhydrophobicity with water contact angle 155.3° after modifying with FAS, and the superhydrophobicity was corrosion-resistance.


2019 ◽  
Vol 798 ◽  
pp. 134-139
Author(s):  
Usanee Pantulap ◽  
Benjamon Petchareanmongkol ◽  
Waraporn Kaewdang ◽  
Kanit Tapasa

The objective of this project was to develop the hydrophobic film for self-cleaning glasses. The effects of octyltriethoxysilane (OTES) additions to hydrolysis of tetraethylorthosilicate (TEOS) on hydrophobic and optically transparent properties were studied. The film was prepared by sol-gel method from the precursors namely, TESO, OTES, isopropanol alcohol (IPA), and deionized water (DI). The sols for coating were obtained with TEOS/OTES ratio of 50:50 to 99:1. The sols were deposited on a commercial glass and dried at 60oC for an hour. After drying, the film properties were characterized by fourier transform infrared spectroscopy (FTIR), UV-VIS Spectrophotometer, x-Ray Diffractometer (XRD), atomic force microscope (AFM), optical microscopy and contact angle meter. It was found that contact angles of the hybrid films increased with the OTES addition, reaching a maximum at 10 wt.%, and the contact angle values were the same as for further addition. The light transmittance was rather stable with increasing amounts of OTES. For the optimized condition, the water contact angle of 108o and light transmittance of 91%, was obtained with TEOS/OTES ratio of 90:10.


1994 ◽  
Vol 346 ◽  
Author(s):  
D. J. Stein ◽  
A. Maskara ◽  
S. Hæreid ◽  
J. Anderson ◽  
D. M. Smith

ABSTRACTCapillary stresses during drying that result from the contact angle of a liquid solvent to a gel, surface tension, and pore size have an immense effect on the dried gel. The extent to which the gel shrinks is a balance between the capillary stress and the solid matrix strength. The dynamic contact angles and surface tensions of various solvents commonly employed in sol-gel processing on silica gels of various surface chemistries have been evaluated. A thin, dense coating of silica gel was formed by dip coating a standard glass slide in an acid catalyzed silica sol and drying. Some of the sample surfaces were organically modified. Dynamic contact angles were determined using a modified Wilhelmy plate technique. Solvent surface tensions were determined using the De Nouy ring technique. The bulk modulus of wet gels were determined with a three point bend experiment. We have found that contrary to previous investigators, who attributed different bulk densities obtained after drying from various alcohols to contact angles variations, gel shrinkage during drying is actually due to slightly different surface tensions and degrees of depolymerization of the gel network.


2011 ◽  
Vol 399-401 ◽  
pp. 2004-2007
Author(s):  
Ahmad Mulia Hafizayatullah Amiruddin ◽  
Roslinda Shamsudin ◽  
Azman Jalar ◽  
Muhammad Azmi Abdul Hamid

In this study, brushite (CaHPO4·2H2O) has been coated on a stainless steel substrate using dip-coating technique. This technique offers uniform and crack-free film over entire surface of the substrate and easy to perform. Layer of brushite coated surround the stainless steel is very much affected by the parameters used namely concentration of the coating solution, speed of coating, stirring time etc. Results show that a smooth thin film is obtained when 1.5M of brushite solution is used and stirred at 50 °C for 2 hours. The optimum withdrawal rate used was 1.5 mm s-1. Thickness of the coating obtained was around 51.37 µm which would enable the apatite to growth.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1554
Author(s):  
Justinas Januskevicius ◽  
Zivile Stankeviciute ◽  
Dalis Baltrunas ◽  
Kęstutis Mažeika ◽  
Aldona Beganskiene ◽  
...  

In this study, an aqueous sol-gel synthesis method and subsequent dip-coating technique were applied for the preparation of yttrium iron garnet (YIG), yttrium iron perovskite (YIP), and terbium iron perovskite (TIP) bulk and thin films. The monophasic highly crystalline different iron ferrite powders have been synthesized using this simple aqueous sol-gel process displaying the suitability of the method. In the next step, the same sol-gel solution was used for the fabrication of coatings on monocrystalline silicon (100) using a dip-coating procedure. This resulted, likely due to substrate surface influence, in all coatings having mixed phases of both garnet and perovskite. Thermogravimetric (TG) analysis of the precursor gels was carried out. All the samples were investigated by X-ray powder diffraction (XRD) analysis. The coatings were also investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Mössbauer spectroscopy. Magnetic measurements were also carried out.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Diana Horkavcová ◽  
Quentin Doubet ◽  
Gisèle Laure Lecomte-Nana ◽  
Eva Jablonská ◽  
Aleš Helebrant

The sol-gel method provides a wide variety of applications in the medical field. One of these applications is the formation of coatings on the metal implants. The coatings containing specific additive can enhance or improve the existing surface properties of the substrate. In this work, titania sol-gel coatings were doped with two forms of silver (AgNO3, Ag3PO4) and synthetic hydroxyapatite and applied on the titanium samples by dip-coating technique. After drying and slow firing, all coatings were characterized with scanning electron microscopy. Thin coatings were successfully prepared with excellent adhesion to the substrate (measured by ASTM D 3359-2), despite cracks. Coatings containing silver and hydroxyapatite demonstrated a 100% antibacterial effect against Escherichia coli after 24 h. The bioactivity of the coatings containing hydroxyapatite tested in modified simulated body fluid under static-dynamic conditions was confirmed by bone-like hydroxyapatite precipitation. To better understand the interaction of the coatings with simulated body fluid (SBF), changes of Ca2+ and (PO4)3− ions concentrations and pH values were studied.


2002 ◽  
Vol 17 (6) ◽  
pp. 1543-1549 ◽  
Author(s):  
S. Sathyamurthy ◽  
M. Paranthaman ◽  
T. Aytug ◽  
B. W. Kang ◽  
P. M. Martin ◽  
...  

Sol-gel processing of La2Zr2O7 (LZO) buffer layers on biaxially textured Ni–1.7% Fe–3% W alloy substrates using a continuous reel-to-reel dip-coating unit has been studied. The epitaxial LZO films obtained have a strong cube texture and uniform microstructure. The effects of increasing the annealing speed on the texture, microstructure, and carbon content retained in the film were studied. On top of the LZO films, epitaxial layers of yttria-stabilized zirconia and Ceria (CeO2) were deposited using rf sputtering, and YBa2Cu3Ox (YBCO) films were then deposited using pulsed laser deposition. Critical current densities (Jc) of 1.9 MA/cm2 at 77 K and self-field and 0.34 MA/cm2at 77 K and 0.5 T have been obtained on these films. These values are comparable to those obtained on YBCO films deposited on all-vacuum deposited buffer layers and the highest ever obtained using solution seed layers.


2007 ◽  
Vol 336-338 ◽  
pp. 593-596
Author(s):  
Chun Yang ◽  
Jun Ying Zhang ◽  
Hai Bing Feng ◽  
Wei Chang Hao ◽  
Tian Min Wang

Y2O3:Eu3+ thin film was synthesized by sol-gel method with inorganic salt raw materials, and the crystal structure and luminescent properties were investigated. By adding organic additive to the sol, a homogeneous film with high luminescent intensity could be obtained by dip-coating technique on the surface of alumina sheet and quartz glass. Structures of the films were studied by XRD and SEM. The excitation spectra of the films showed a wide excitation peak from 200nm to 260nm, and the emission spectra had a strongest emission peak at 611nm which revealed a close relationship with the calcining temperature.


2020 ◽  
Vol 20 (3) ◽  
pp. 1780-1789 ◽  
Author(s):  
Priyanka Katiyar ◽  
Shraddha Mishra ◽  
Anurag Srivastava ◽  
N. Eswara Prasad

TiO2, SiO2 and their hybrid nanocoatings are prepared on inherent flame retardant textile substrates from titanium(IV)iso-proproxide (TTIP) and tetraethoxysilane (TEOS) precursors using a sol–gel process followed by hydrothermal treatment. The coated samples are further functionalized by hexadecyltrimethoxysilane (HDTMS) to impart superhydrophobicity. Sample characterization of the nanosols, nanoparticles and coated samples are investigated using, X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy, contact angle measurement. Stain degradation test under mild UV irradiation shows almost 54% degradation of coffee stain within 4 hours measured by Spectrophotometer. UV-Vis Absorption Spectroscopy demonstrates complete degradation of methyl orange colorant within 3 hours. Hybrid nanosol coated and HDTMS modified inherent flame retardant polyester surfaces show apparent water contact angle as ~145°, which is much closer to proximity of superhydrophobic surfaces. Thus, the novelty of present work is, by using sol–gel technique, a bi-functional textile surface has been developed which qualifies the very specific requirements of protective clothing like self-cleaning property (imparted by TiO2 nanoparticles) and superhydrophobicity (imparted by SiO2 nanoparticles and further surface modification by HDTMS), which are entirely contradictory in nature, in a single fabric itself. Thus developed textile surfaces also possess the other attributes of protective clothing like flame retardancy and air permeability.


Sign in / Sign up

Export Citation Format

Share Document