Single-phase aluminum nitride films by dc-magnetron sputtering

1990 ◽  
Vol 5 (11) ◽  
pp. 2677-2681 ◽  
Author(s):  
J. S. Morgan ◽  
W. A. Bryden ◽  
T. J. Kistenmacher ◽  
S. A. Ecelberger ◽  
T. O. Poehler

Single-phase aluminum nitride films were deposited onto fused quartz and single-crystal sapphire by current-controlled, reactive, de magnetron sputtering from an aluminum metal target. Optical and structural properties were observed to correlate systematically with the composition of the sputter gas over a wide range of nitrogen partial pressures. A transition in the electrical conductivity of the deposited films occurred as a function of N2 partial pressure. This transition is driven by the condition of the target surface. When the N2 partial pressure was high and the target surface was substantially covered with AlNx, the deposited film was insulating, stoichiometric AlN. When the N2 partial pressure was low and the target surface was substantially Al°, the deposited film was conducting, substoichiometric AlNx.

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950349 ◽  
Author(s):  
Pengfei Guo ◽  
Caijuan Liu ◽  
Junhui Liu ◽  
Ruoping Li ◽  
Mingju Huang

In order to obtain a material with high solar modulation ability [Formula: see text] and crystalline quality, [Formula: see text] films were prepared on quartz glass substrates using RF magnetron sputtering under various oxygen partial pressures. Their phase, surface, transmittance, and film sheet resistance properties were analyzed. As the oxygen partial pressure increased, the luminous transmittance [Formula: see text] of the film increased to as high as 55.6%, while the [Formula: see text] first increased to a maximum of 10.8% and then decreased. This paper is a meaningful aid in the application of [Formula: see text] films to smart windows.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
S. Subbarayudu ◽  
V. Madhavi ◽  
S. Uthanna

Molybdenum oxide (MoO3) films were deposited on glass and silicon substrates held at temperature 473 K by RF magnetron sputtering of molybdenum target at various oxygen partial pressures in the range 8×10-5–8×10-4 mbar. The deposited MoO3 films were characterized for their chemical composition, crystallographic structure, surface morphology, chemical binding configuration, and optical properties. The films formed at oxygen partial pressure of 4×10-4 mbar were nearly stoichiometric and nanocrystalline MoO3 with crystallite size of 27 nm. The Fourier transform infrared spectrum of the films formed at 4×10-4 mbar exhibited the characteristics vibrational bands of MoO3. The optical band gap of the films increased from 3.11 to 3.28 eV, and the refractive index increased from 2.04 to 2.16 with the increase of oxygen partial pressure from 8×10-5 to 8×10-4 mbar, respectively. The electrochromic performance of MoO3 films formed on ITO coated glass substrates was studied and achieved the optical modulation of about 13% with color efficiency of about 20 cm2/C.


Author(s):  
Philip J. Peyton

Under the three-compartment model of ventilation-perfusion (VA/Q) scatter, Bohr-Enghoff calculation of alveolar deadspace fraction (VDA/VA) uses arterial CO2 partial pressure measurement as an approximation of "ideal" alveolar CO2(ideal PACO2). However, this simplistic model suffers from several inconsistencies. Modelling of realistic physiological distributions of VA and Q instead suggests an alternative concept of "ideal" alveolar gas at the VA/Q ratio where uptake or elimination rate of a gas is maximal. The alveolar-capillary partial pressure at this "modal" point equals the mean of expired alveolar and arterial partial pressures, regardless of VA/Q scatter severity or overall VA/Q. For example, modal ideal PACO2 can be estimated from Estimated modal ideal PACO2 = (PACO2+PaCO2)/2 Using a multicompartment computer model of log normal distributions of VA and Q, agreement of this estimate with the modal ideal PACO2 located at the VA/Q ratio of maximal compartmental VCO2 was assessed across a wide range of severity of VA/Q scatter and overall VA/Q ratio. Agreement of VDA/VA for CO2 from the Bohr equation using modal idealPCO2 with that using the estimated value was also assessed. Estimated modal ideal PACO2 agreed closely with modal ideal PACO2, intraclass correlation (ICC) > 99.9%. There was no significant difference between VDA/VACO2 using either value for ideal PACO2. Modal ideal PACO2 reflects a physiologically realistic concept of ideal alveolar gas where there is maximal gas exchange effectiveness in a physiological distribution of VA/Q, which is generalizable to any inert gas, and is practical to estimate from arterial and end-expired CO2 partial pressures.


2014 ◽  
Vol 1642 ◽  
Author(s):  
Atsuo Katagiri ◽  
Shota Ogawa ◽  
Takao Shimizu ◽  
Masaaki Matsushima ◽  
Kensuke Akiyama ◽  
...  

ABSTRACTA RF magnetron sputtering method was used to prepare Mg2Si films at 300-400oC on (001) Al2O3 substrates from a Mg disc target with Si chips. Mg deposition was not detected at 400°C from a pure Mg disc target without Si chips due to the high vapor pressure of Mg. However, the amount of Mg deposition increased with the increase in Si/(Mg+Si) area ratio of the target surface together with the increase of the Si deposition. The obtained films had a stoichiometric composition of Si/(Mg+Si)=0.33 that consisted of the well crystalline Mg2Si single phase regardless of Si/(Mg+Si) area ratio of the target surface. This showed the existence of a “process window” against supply ratio of Si/(Mg+Si) for Mg2Si single phase films with a stoichiometric composition. This is considered to be due to the vaporization of the excess Mg prepared under the Mg excess condition as reported by Mahan et al. for Mg2Si films prepared at 200°C by ultra-high vacuum evaporation.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 653-657 ◽  
Author(s):  
S. UTHANNA ◽  
M. HARI PRASAD REDDY ◽  
J. F. PIERSON

Ag2Cu2O3 films were deposited on glass substrates held at 303 K by RF magnetron sputtering of Ag70 Cu30 target at different oxygen partial pressures and substrate bias voltages. Single phase Ag2Cu2O3 films were formed at an oxygen partial pressure of 2 × 10-2 Pa . The films deposited at oxygen partial pressure 2 × 10-2 Pa and substrate bias voltage of -60 V were nanocrystalline with crystallite size of 20 nm, low electrical resistivity of 3.9 Ωcm and optical band gap of 2.02 eV.


2008 ◽  
Vol 55-57 ◽  
pp. 465-468 ◽  
Author(s):  
Surasing Chaiyakun ◽  
A. Buranawong ◽  
T. Deelert ◽  
N. Witit-Anun

TiO2 thin films have been deposited by reactive DC magnetron sputtering technique to study the effect of total pressure and oxygen partial pressure on structure and hydrophilic properties. The crystal structure and hydrophilic property was measured by XRD and contact angle meter, respectively. The results showed that the films were composed of pure rutile and mixed of anatase/rutile structure dependent on the total pressure and oxygen partial pressure. It was found that all films can perform hydrophilic property. In case of high total pressure, the films showed superhydrophilic property, whereas the films deposited under various oxygen partial pressures with fixed total pressure were all films exhibit superhydrophilic property.


1994 ◽  
Vol 9 (8) ◽  
pp. 1936-1945 ◽  
Author(s):  
S.Y. Hou ◽  
Julia M. Phillips ◽  
D.J. Werder ◽  
T.H. Tiefel ◽  
J.H. Marshall ◽  
...  

Systematic studies have been performed on 1000 Å YBa2Cu3O7−δ films produced by the BaF2 process and annealed in an oxygen partial pressure (Po2) range from 740 Torr to 10 mTorr as well as a temperature range from 600 to 1050 °C. The results show that while high quality films can be annealed in a wide range of oxygen partial pressure, they have different characteristics. In general, crystalline quality and Tc are optimized at high Po2 and high annealing temperature, while strong flux pinning and low normal state resistivity are achieved at lower values of both variables. Under optimized low Po2 conditions, an ion channeling Xmin of 6% is obtained on films as thick as 5000 Å. This study will serve as a useful guide to tailoring film properties to the application at hand.


1998 ◽  
Vol 541 ◽  
Author(s):  
Li-jian Meng ◽  
M.P. dos Santos

AbstractRuthenium dioxide films have been prepared by rf reactive magnetron sputtering at different oxygen partial pressures and total sputtering pressures. The films have been characterized by scanning electron microscopy, X-ray diffraction and electrical conductivity. The films prepared at low oxygen partial pressure and total pressure show a strong preferred orientation along the [110] direction. As both pressures increased, the peak intensity decreases. All the films are subject to a compressive stress. As the total pressure is decreased and the oxygen partial pressure is increased, the stress increases. When the total pressure is lower than 6 × 10−3 mbar and the oxygen partial pressure is higher than 1 × 103 mbar, the films peeled off automatically from the substrate because of the high stress. The films prepared at high oxygen partial pressure and high total pressure have a rough surface and those prepared at low pressure show smooth surface. In this paper, these phenomena have been discussed. In addition, the electrical properties of the films are also discussed.


1994 ◽  
Vol 358 ◽  
Author(s):  
S.M. Cho ◽  
D. Wolfe ◽  
S.S. He ◽  
K. Christensen ◽  
D.M. Maher ◽  
...  

ABSTRACTSixGei1−x:H alloys which span the transition from amorphous to microcrystalline structures have been prepared by reactive magnetron sputtering (RMS) from pure crystalline Si and Ge targets in different partial pressures of hydrogen, using argon as the sputtering gas. Film properties were studied as a function of H2 flow and partial pressure. X-ray diffraction (XRD), Raman scattering, Fourier transform infrared spectroscopy (FTIR), reflection high-energy electron diffraction (RHEED), and high resolution transmission electron microscopy (HRTEM) have been used for microstructural characterization. Films prepared by RMS at a partial pressure of hydrogen (PH2) < ∼ 4 mTorr were amorphous, while those prepared with PH2 > ∼ 6 mTorr were microcrystalline.


Sign in / Sign up

Export Citation Format

Share Document