Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD

1993 ◽  
Vol 8 (6) ◽  
pp. 1361-1367 ◽  
Author(s):  
Cheol Seong Hwang ◽  
Hyeong Joon Kim

ZrO2 thin films were deposited at 1 atm on Si substrates by oxidation-assisted thermal decomposition of zirconium-trifluoroacetylacetonate in the temperature range of 300–615 °C. Above a deposition temperature of 400 °C, the deposited thin films have a columnar grain structure, where each grain is perpendicular to the substrate surface with a c-axis preferred crystallographic orientation, and have poor electrical characteristics as a dielectric thin film. But the thin film deposited at 350 °C has a fine equiaxed microcrystalline structure and has superior electrical characteristics of a breakdown field of 1 MV/cm and a relative dielectric constant of 27.

2007 ◽  
Vol 21 (18n19) ◽  
pp. 3404-3411
Author(s):  
M. C. KAO ◽  
H. Z. CHEN ◽  
S. L. YOUNG ◽  
C. C. LIN ◽  
C. C. YU

LiTaO 3 thin films were deposited on Pt / Ti / SiO 2/ Si substrates by means of a sol-gel spin-coating technology and rapid thermal annealing (RTA). The influence of various annealing treatments on the characteristics of the thin films were studied by varying the single-annealed-layer thickness (50 ~ 200 nm ) and heating temperatures (500 ~ 800° C ) of the samples. Experimental results reveal that the single-annealed-layer strongly influences grain size, dielectricity and ferroelectricity of LiTaO 3 thin films. The grain size of LiTaO 3 thin film decreases slightly with increasing thickness of the single-annealed-layer, and highly c-axis orientated LiTaO 3 films can be obtained for a single-annealed-layer of 50 nm. When the thickness of the single-annealed-layer was increased from 50 to 200 nm, the relative dielectric constant of LiTaO 3 thin film decreased from 65 to 35, but the dielectric loss factor (tanδ) was increased. The LiTaO 3 films with the single-annealed-layer of 50 nm showed excellent ferroelectric properties in terms of a remanent polarization ( P r) of 12.3 μ C /cm2 (Ec ∼ 60 kV/cm), and a low current density of 5.2×l0-8 A /cm2 at 20 kV/cm.


2020 ◽  
Vol 1014 ◽  
pp. 27-32
Author(s):  
Guang Shuo Cai ◽  
Yan Li Pei ◽  
Sheng Dong Zhang

In this paper, polycrystal Ga2O3 thin films were grown on crystal n+-Si substrates by solution process. The XRD profile revealed that monoclinic β-Ga2O3 and rhombohedral α-Ga2O3 were coexisting in the film. The solution-process Ga2O3 film exhibited an ultrahigh transmittance (>97%) to a wavelength range of 280 nm~800 nm. The optical bandgap of ~5.0 eV and breakdown field of 4.2 MV/cm of the Ga2O3 thin film was obtained. Dielectric parameters such as capacitance, dielectric permittivity and loss tangent were investigated. It was observed that these parameters have a strong dependence on frequency.


Author(s):  
M. Grant Norton ◽  
C. Barry Carter

Pulsed-laser ablation has been widely used to produce high-quality thin films of YBa2Cu3O7-δ on a range of substrate materials. The nonequilibrium nature of the process allows congruent deposition of oxides with complex stoichiometrics. In the high power density regime produced by the UV excimer lasers the ablated species includes a mixture of neutral atoms, molecules and ions. All these species play an important role in thin-film deposition. However, changes in the deposition parameters have been shown to affect the microstructure of thin YBa2Cu3O7-δ films. The formation of metastable configurations is possible because at the low substrate temperatures used, only shortrange rearrangement on the substrate surface can occur. The parameters associated directly with the laser ablation process, those determining the nature of the process, e g. thermal or nonthermal volatilization, have been classified as ‘primary parameters'. Other parameters may also affect the microstructure of the thin film. In this paper, the effects of these ‘secondary parameters' on the microstructure of YBa2Cu3O7-δ films will be discussed. Examples of 'secondary parameters' include the substrate temperature and the oxygen partial pressure during deposition.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


1995 ◽  
Vol 411 ◽  
Author(s):  
Chunyan Tian ◽  
Siu-Wai Chan

ABSTRACTThin films of 4% Y2O3 doped CeO2/Pd film/(001)LaA103 with a very low pinhole density were successfully prepared using electron-beam deposition technique. The microstructure of the films was characterized by x-ray diffraction and the electrical properties were studied as a function of temperature with AC impedance spectroscopy. A brick layer model was adopted to correlate the electrical properties to the microstructure of the films, which can be simplified as either a series or a parallel equivalent circuit associated with either a fine grain or a columnar grain structure, respectively. The conductivities of the films fell between the conductivities derived from the two circuit models, suggesting that the films are of a mixed fine grain and columnar grain structure. The measured dielectric constants of the films were found smaller than that of the bulk.


2006 ◽  
Vol 21 (2) ◽  
pp. 505-511 ◽  
Author(s):  
Lili Hu ◽  
Junlan Wang ◽  
Zijian Li ◽  
Shuang Li ◽  
Yushan Yan

Nanoporous silica zeolite thin films are promising candidates for future generation low-dielectric constant (low-k) materials. During the integration with metal interconnects, residual stresses resulting from the packaging processes may cause the low-k thin films to fracture or delaminate from the substrates. To achieve high-quality low-k zeolite thin films, it is important to carefully evaluate their adhesion performance. In this paper, a previously reported laser spallation technique is modified to investigate the interfacial adhesion of zeolite thin film-Si substrate interfaces fabricated using three different methods: spin-on, seeded growth, and in situ growth. The experimental results reported here show that seeded growth generates films with the highest measured adhesion strength (801 ± 68 MPa), followed by the in situ growth (324 ± 17 MPa), then by the spin-on (111 ± 29 MPa). The influence of the deposition method on film–substrate adhesion is discussed. This is the first time that the interfacial strength of zeolite thin films-Si substrates has been quantitatively evaluated. This paper is of great significance for the future applications of low-k zeolite thin film materials.


1995 ◽  
Vol 403 ◽  
Author(s):  
K. Barmak ◽  
C. Michaelsent ◽  
J. Rickman ◽  
M. Dahmstt

AbstractIt is a well known fact that the properties and performance of polycrystalline materials, including polycrystalline thin films, are strongly affected by the grain structure. Therefore, in treating reactive phase formation in these films, it is (or it will inevitably be) necessary to quantify the grain structure of reactant and product phases and its evolution during the course of the reaction. Theoretical models and the conventional view of thin film reactions, however, have been largely extensions, to small and finite dimensions, of theories and descriptions developed for bulk diffusion couples. These models and descriptions primarily focus on the growth stage and to a much lesser extent on the nucleation stage. Consequently, these models and descriptions are not able to treat the development of product phase grain structure. Recent calorimetric investigations of several thin film systems demonstrate the importance of nucleation kinetics (and hence nucleation barriers) in product phase formation and provide quantitative measures of the thermodynamics and kinetics of formation of the product phases, thereby allowing some degree of comparison with reaction models. Furthermore, microstructural investigations of thin-film reactions demonstrate the non-planarity of the growth front and highlight the role of reactant-phase grain boundaries. In this paper, a summary of these experimental studies and recent theoretical treatments, which combine nucleation and growth in an integrated manner, is presented, with particular emphasis on the Nb/Al system. These experiments and models lead to a new view of reactive phase formation and grain structure evolution as one in which the latter is an integral part of the former. Based on this view, directions for future research are discussed.


1995 ◽  
Vol 49 (6) ◽  
pp. 819-824 ◽  
Author(s):  
Jun Shen ◽  
Andreas Mandelis ◽  
Andreas Othonos ◽  
Joseph Vanniasinkam

The recently developed photothermal technique of quadrature photopyroelectric spectroscopy (Q-PPES) has been applied to measurements of amorphous Si thin films deposited on crystalline Si substrates. Direct, meaningful comparisons have been made between purely optical transmission in-phase (IP-PPES) spectra, and purely thermal-wave sub-gap spectra with the use of a novel noncontacting PPES instrument to record lock-in in-phase and quadrature spectra, respectively. FT-IR transmission spectra have also been obtained for a comparison with this IP-PPES optical method. The results of the present work showed that the FT-IR method performs the worst in terms of spectral resolution of thin films and sub-bandgap defect/impurity absorptions inherent in the Si wafer substrate. The optical IP-PPES channel, however, albeit more sensitive than the FT-IR technique, fails to resolve spectra from surface films thinner than 2100 Å, but is sensitive to sub-bandgap absorptions. The thermal-wave Q-PPES channel is capable of resolving thin-film spectra well below 500 Å thick and exhibits strong signal levels from the crystalline Si sub-bandgap absorptions. Depending on the surface thin-film orientation toward, or away from, the direction of the incident radiation, the estimated minimum mean film thickness resolvable spectroscopically by Q-PPES is either 40 Å or 100 Å, respectively.


1995 ◽  
Vol 415 ◽  
Author(s):  
Joon Sung Lee ◽  
Han Wook Song ◽  
Dae Sung Yoon ◽  
Byung Hyuk Jun ◽  
Byoung Gon Yu ◽  
...  

ABSTRACTSrTiO3 thin films were prepared on Si(p-type 100) and Pt/SiO2/Si substrates using ECR plasma (or without ECR plasma) assisted MOCVD. Sr(TMI-D)2 and Ti-isopropoxide were used as Sr and Ti metal organic sources, respectively. Perovskite SrTiO3 films were obtained at relatively low temperature of 500°C (using ECR oxygen plasma. Experimental results indicated that higher deposition temperature and ECR oxygen plasma increase the crystallinity, the dielectric constant and the leakage current density. The dielectric constant and the dielectric loss were 222 and 0.04, respectively, for 1234 Å thin SrTiO3 film (Sr/(Sr+Ti)=0.5). The leakage current density was 3.78 × 10−7 A/cm2 at 1.0V, and the dielectric breakdown field was 0.57MV/cm. SEM analyses showed that SrTiO3 films have a uniform and fine grain structure. In terms of step coverage, a lateral step coverage of 50% at 0.8 μm step (the aspect ratio was 1) was obtained with the thickness uniformity of ± 0.5% and the composition uniformity of ±1.2% at 4′′ wafer.


Sign in / Sign up

Export Citation Format

Share Document