Electron microscopic interfacial analysis of diamond film grown on silicon substrate

1996 ◽  
Vol 11 (7) ◽  
pp. 1783-1786 ◽  
Author(s):  
N. Jiang ◽  
A. Hatta ◽  
T. Ito ◽  
Z. Zhang ◽  
T. Sasaki ◽  
...  

We have investigated the near-interface characterization of diamond films grown on Si(100) substrates by means of a hot-filament chemical-vapor-deposition (HFCVD) method using high-resolution-electron microscopy (HREM). Atomic scale study of the diamond/Si interface reveals that on the top of the amorphous intermediate layer, there exists a precursor phase which seems to be a diamond-like structure, which provides a suitable site for subsequent diamond nucleation. High density crystal defects directly originate from the precursor phase. HREM images also reveal that during the deposition Si recrystallizes in some damaged areas left by pretreatment, such as scratching grooves. In the recrystallization process twins and microtwins can be formed, and amorphous solid is left in the Si crystals.

1997 ◽  
Vol 482 ◽  
Author(s):  
Christian Kisielowski ◽  
Olaf Schmidt ◽  
Jinwei Yang

AbstractA GaN/AlxGalxN multi-quantum well test structure with Al concentrations 0 ≤ xAl ≤ 1 was utilized to investigate the growth of AlxGal–xN barrier layers deposited by metal organic chemical vapor deposition (MOCVD). A transition from a two dimensional (2D) to a three dimensional (3D) growth mode was observed in AlxGa1–xN barriers with XAl ≥ 0.75. It is argued that the transition occurs because of growth at temperatures that are low compared with the materials melting points Tmelt. The resulting rough AlxGa1–xN surfaces can be planarized by overgrowth with GaN. Quantitative high resolution electron microscopy (HREM) was applied to measure composition and strain profiles across the GaN/AlxGa1−xN stacks at an atomic level. The measurements reveal a substantial variation of lattice constants at the AlxGa1−xN/GaN interfaces that is attributed to an Al accumulation.


2000 ◽  
Vol 15 (9) ◽  
pp. 2020-2026 ◽  
Author(s):  
H. Y. Peng ◽  
X. T. Zhou ◽  
H. L. Lai ◽  
N. Wang ◽  
S. T. Lee

The microstructures of β-SiC nanorods synthesized by hot-filament chemical vapor deposition were studied in detail by high-resolution electron microscopy. Two distinct types of nanorods were identified. The longer nanorods (lengths > 0.1 mm) contained globules at their tips and a relatively low density of stacking faults perpendicular to their [111] growth direction. It was also observed that SiC nanorods that grew along [100] direction contained no planar defects. Meanwhile, Ni was found to be an effective catalyst for SiC nanorod growth. The short nanorods (lengths < 50 nm), which contained no globules at their ends, can grow along [111], [100], or [112] direction. The growth of these nanorods was interpreted by a two-dimensional vapor–solid mechanism.


1994 ◽  
Vol 357 ◽  
Author(s):  
Jie Yang ◽  
Zhangda Lin ◽  
Li-Xin Wang ◽  
Sing Jin ◽  
Ze Zhang

AbstractDiamond films with high preferential orientation (111) on silicon (100) crystalline orientation substrates had been obtained by hot-filament chemical vapor deposition (HFCVD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, and high-resolution cross-sectional transmission electron microscopy (HREM) are used to characterizate the structure and morphology of the synthesised diamond films. Diamond (111) plans had been local grown epitaxially on the Si(100) substrate observed by HREM. SEM photographes show that plane diamond crystals have been obtained.


Author(s):  
J.M. Cowley

By extrapolation of past experience, it would seem that the future of ultra-high resolution electron microscopy rests with the advances of electron optical engineering that are improving the instrumental stability of high voltage microscopes to achieve the theoretical resolutions of 1Å or better at 1MeV or higher energies. While these high voltage instruments will undoubtedly produce valuable results on chosen specimens, their general applicability has been questioned on the basis of the excessive radiation damage effects which may significantly modify the detailed structures of crystal defects within even the most radiation resistant materials in a period of a few seconds. Other considerations such as those of cost and convenience of use add to the inducement to consider seriously the possibilities for alternative approaches to the achievement of comparable resolutions.


Author(s):  
David J. Smith

The era of atomic-resolution electron microscopy has finally arrived. In virtually all inorganic materials, including oxides, metals, semiconductors and ceramics, it is possible to image individual atomic columns in low-index zone-axis projections. A whole host of important materials’ problems involving defects and departures from nonstoichiometry on the atomic scale are waiting to be tackled by the new generation of intermediate voltage (300-400keV) electron microscopes. In this review, some existing problems and limitations associated with imaging inorganic materials are briefly discussed. The more immediate problems encountered with organic and biological materials are considered elsewhere.Microscope resolution. It is less than a decade since the state-of-the-art, commercially available TEM was a 200kV instrument with a spherical aberration coefficient of 1.2mm, and an interpretable resolution limit (ie. first zero crossover of the contrast transfer function) of 2.5A.


Author(s):  
Philippe Pradère ◽  
Edwin L. Thomas

High Resolution Electron Microscopy (HREM) is a very powerful technique for the study of crystal defects at the molecular level. Unfortunately polymer crystals are beam sensitive and are destroyed almost instantly under the typical HREM imaging conditions used for inorganic materials. Recent developments of low dose imaging at low magnification have nevertheless permitted the attainment of lattice images of very radiation sensitive polymers such as poly-4-methylpentene-1 and enabled molecular level studies of crystal defects in somewhat more resistant ones such as polyparaxylylene (PPX) [2].With low dose conditions the images obtained are very noisy. Noise arises from the support film, photographic emulsion granularity and in particular, the statistical distribution of electrons at the typical doses of only few electrons per unit resolution area. Figure 1 shows the shapes of electron distribution, according to the Poisson formula :


Author(s):  
W. Coene ◽  
F. Hakkens ◽  
T.H. Jacobs ◽  
K.H.J. Buschow

Intermetallic compounds of the type RE2Fe17Cx (RE= rare earth element) are promising candidates for permanent magnets. In case of Y2Fe17Cx, the Curie temperature increases from 325 K for x =0 to 550 K for x = 1.6 . X ray and electron diffraction reveal a carbon - induced structural transformation in Y2Fe17Cx from the hexagonal Th2Ni17 - type (x < 0.6 ) to the rhombohedral Th2Zn17 - type ( x ≥ 0.6). Planar crystal defects introduce local sheets of different magnetic anisotropy as compared with the ordered structure, and therefore may have an important impact on the coercivivity mechanism .High resolution electron microscopy ( HREM ) on a Philips CM30 / Super Twin has been used to characterize planar crystal defects in rhombohedral Y2Fe17Cx ( x ≥ 0.6 ). The basal plane stacking sequences are imaged in the [100] - orientation, showing an ABC or ACB sequence of Y - atoms and Fe2 - dumbbells, for both coaxial twin variants, respectively . Compounds resulting from a 3 - week annealing treatment at high temperature ( Ta = 1000 - 1100°C ) contain a high density of planar defects.


1998 ◽  
Vol 4 (S2) ◽  
pp. 556-557
Author(s):  
S. Stemmer ◽  
G. Duscher ◽  
E. M. James ◽  
M. Ceh ◽  
N.D. Browning

The evaluation of the two dimensional projected atom column positions around a defect or an interface in an electronic ceramic, as it has been performed in numerous examples by (quantitative) conventional high-resolution electron microscopy (HRTEM), is often not sufficient to relate the electronic properties of the material to the structure of the defect. Information about point defects (vacancies, impurity atoms), and chemistry or bonding changes associated with the defect or interface is also required. Such complete characterization is a necessity for atomic scale interfacial or defect engineering to be attained.One instructive example where more than an image is required to understand the structure property relationships, is that of grain boundaries in Fe-doped SrTi03. Here, the different formation energies of point defects cause a charged barrier at the boundary, and a compensating space charge region around it. The sign and magnitude of the barrier depend very sensitively on the atomic scale composition and chemistry of the boundary plane.


1986 ◽  
Vol 77 ◽  
Author(s):  
Mary Beth Stearns ◽  
Amanda K. Petford-Long ◽  
C.-H. Chang ◽  
D. G. Stearns ◽  
N. M. Ceglio ◽  
...  

ABSTRACTThe technique of high resolution electron microscopy has been used to examine the structure of several multilayer systems (MLS) on an atomic scale. Mo/Si multilayers, in use in a number of x-ray optical element applications, and Mo/Si multilayers, of interest because of their magnetic properties, have been imaged in cross-section. Layer thicknesses, flatness and smoothness have been analysed: the layer width can vary by up to 0.6nm from the average value, and the layer flatness depends on the quality of the substrate surface for amorphous MLS, and on the details of the crystalline growth for the crystalline materials. The degree of crystallinity and the crystal orientation within the layers have also been investigated. In both cases, the high-Z layers are predominantly crystalline and the Si layers appear amorphous. Amorphous interfacial regions are visible between the Mo and Si layers, and crystalline cobalt suicide interfacial regions between the Co and Si layers. Using the structural measurements obtained from the HREM results, theoretical x-ray reflectivity behaviour has been calculated. It fits the experimental data very well.


2007 ◽  
Vol 558-559 ◽  
pp. 465-470
Author(s):  
Fritz Appel ◽  
Michael Oehring ◽  
Jonathan H.D. Paul

Intermetallic titanium aluminide alloys are multiphase assemblies with complex microstructure and constitution, involving the phases γ(TiAl), α2(Ti3Al), β, and B2. The earlier stages of phase transformation and dynamic recrystallization occurring upon hot-working of such an alloy were investigated at the atomic scale by high-resolution electron microscopy. Accordingly, the conversion of the microstructure is triggered by heterogeneities in the deformation state and non-equilibrium phase composition. The β/B2 phase is apparently unstable under tetragonal distortion, which gives rise to the formation of the B19 phase via distinct shuffle displacements. These processes lead to a modulated microstructure, which is comprised of several stable and metastable phases. The phase transformations are accomplished by the propagation and coalescence of ledges. Large and broad ledges can apparently easily be rearranged into intermediate metastable structures, which serve as precursor for the nucleation of new grains.


Sign in / Sign up

Export Citation Format

Share Document