The reaction between a TiNi shape memory thin film and silicon

1997 ◽  
Vol 12 (7) ◽  
pp. 1734-1740 ◽  
Author(s):  
Susanne Stemmer ◽  
Gerd Duscher ◽  
Christina Scheu ◽  
Arthur H. Heuer ◽  
Manfred Rühle

The reaction between shape-memory TiNi thin films and silicon has been characterized by conventional, analytical, and high-resolution transmission electron microscopy. A reaction layer is formed during the 525 °C post-deposition crystallization anneal of the sputter-deposited TiNi, and consists of several phases: Ti2Ni, a nickel silicide, and a ternary titanium nickel silicide. The mechanism for the interlayer formation is discussed.

1996 ◽  
Vol 452 ◽  
Author(s):  
U. Klement ◽  
D. Horst ◽  
F. Ernst

AbstractThe objective of this work is to find a material to replace amorphous hydrogenated silicon used as photosensitive part in the “retina” of an “electronic eye”. For that reason, ZnS, ZnSe, CdS and CdSe were chosen for investigations. Thin films, prepared by chemical vapour deposition, were characterized by transmission electron microscopy. The observed microstructures were correlated with the optoelectronic properties of these materials. CdSe was found to be the most promising material for our application. Hence, the influence of a dielectric interlayer and the effects of additional annealing treatments were analyzed for CdSe and will be discussed with respect to the optimization of the material.


2005 ◽  
Vol 20 (7) ◽  
pp. 1808-1813 ◽  
Author(s):  
X.-G. Ma ◽  
K. Komvopoulos

Transmission electron microscopy (TEM) and nanoindentation, both with in situ heating capability, and electrical resistivity measurements were used to investigate phase transformation phenomena and thermomechanical behavior of shape-memory titanium-nickel (TiNi) films. The mechanisms responsible for phase transformation in the nearly equiatomic TiNi films were revealed by heating and cooling the samples inside the TEM vacuum chamber. Insight into the deformation behavior of the TiNi films was obtained from the nanoindentation response at different temperatures. A transition from elastic-plastic to pseudoelastic deformation of the martensitic TiNi films was encountered during indentation and heating. In contrast to the traditional belief, the martensitic TiNi films exhibited a pseudoelastic behavior during nanoindentation within a specific temperature range. This unexpected behavior is interpreted in terms of the evolution of martensitic variants and changes in the mobility of the twinned structures in the martensitic TiNi films, observed with the TEM during in situ heating.


1995 ◽  
Vol 398 ◽  
Author(s):  
K. Barmak ◽  
S. Vivekanand ◽  
F. Ma ◽  
C. Michaelsen

ABSTRACTThe formation of the first phase in the reaction of sputter-deposited Nb/Al multilayer thin films has been studied by power-compensated and heat-flux differential scanning calorimetry, x-ray diffraction and transmission electron microscopy. The modulation periods of the films are in the range of 10-500 nm. Both types of calorimetrie measurements, performed at a constant heating rate, show the presence of two peaks (A and B) for the formation of the single product phase, NbAl3. Isothermal calorimetrie scans show that peak A is associated with a nucleation and growth type transformation. The formation of NbAl3 is thus interpreted as a two-stage process of nucleation and lateral growth to coalescence (peak A) followed by normal growth until the consumption of one or both reactants (peak B). Transmission electron microscopy investigations of samples annealed into the first stage of NbAl3 formation show the presence of this phase at the Nb/Al interface and its preferential growth along the grain boundaries of the Al layer. The latter highlights the role of reactant phase grain structure in product phase formation.


2000 ◽  
Vol 6 (S2) ◽  
pp. 462-463
Author(s):  
G. Y. Yang ◽  
V. Nagarajan ◽  
Z. L. Wang ◽  
Y. H. Li ◽  
R. Ramesh

Pb(Mg1/3Nb2/3)O3 (PMN)- and its solid solution with PbTiO3 (PT) is one of the lead-based relaxor ferroelectrics and has been the most widely studied materials because of their high dielectric constants and high electrostrictive coefficients. The potential impact of the thin film ferroelectric relaxors in the integrated actuators and sensing applications has stimulated research on the growth and characterization of thin films. Thin films have been made by pulsed-laser deposition (PLD), sol-gel and metalrganic chemical-vapor deposition. It is known that electrical properties may be strongly influenced by the microstructure of films and the interface structures between different phase in such heterostructure systems. In this paper, we report the investigation of interfacial mismatch and interface structure of epitaxial Pb(Mg1/3Nb2/3)O3 (90%)- PbTiO3 (10%) relaxor thin film by high resolution transmission electron microscopy (HRTEM).Thin film capacitors of Pb(Mg1/3Nb2/3)O3 (90%) - PbTiO3 (10%) (PMN-PT) were grown by PLD on (100)-oriented LaA1O3 (LAO) substrates. La0.5Sr0.5CoO3 (LSCO) layer was deposited as electrode. Cross-sectional transmission electron microscopy samples were prepared following the traditional procedures including cutting, gluing, polishing and ion milling.


1987 ◽  
Vol 108 ◽  
Author(s):  
D. Goyal ◽  
W. Ng ◽  
A. H. King ◽  
J. C. Bilello

ABSTRACTWe have used synchrotron x-ray topographic techniques to study the stresses in thin films formed upon silicon substrates either by evaporation or sputtering. It is found that the film stress generally decreases with increasing film thickness for evaporated films, but film delamination occurs at a well defined film thickness. Transmission electron microscope studies have been performed on the same specimens in order to reveal what mechanisms are involved with the delamination of the films.


2010 ◽  
Vol 638-642 ◽  
pp. 2938-2943 ◽  
Author(s):  
A.V. Mogilatenko ◽  
Frank Allenstein ◽  
M.A. Schubert ◽  
Meiken Falke ◽  
G. Beddies ◽  
...  

Thin Ni/Al and Ni/Ga layers of different atomic ratios were codeposited onto Si(001) at room temperature followed by subsequent annealing. Influence of annealing temperature on morphology and composition of ternary disilicide NiSi2-xAlx and NiSi2-xGax layers was investigated by transmission electron microscopy. Addition of Al or Ga leads to a decrease of the disilicide formation temperature from 700°C down to at least 500°C. Depending on the composition closed, uniformly oriented NiSi2-xAlx and NiSi2-xGax layers were observed after annealing at 900°C, whereas reaction of a pure Ni film with Si leads to the island formation with a mixture of A- and B-type orientations.


1987 ◽  
Vol 104 ◽  
Author(s):  
J. M. Gibson

ABSTRACTThe growth of the epitaxial silicides NiSi2 and CoSi2 on Si is discussed from observations made by in-situ transmission electron microscopy. In particular, we observe the occurrence of epitaxial metastable phases which arise from the dominance of interface energy in extremely thin films. Such phases relate to the thickness dependence of the microstructure in these silicides and may be expected to occur in many binary and more complex thin film systems.


1989 ◽  
Vol 4 (4) ◽  
pp. 755-758 ◽  
Author(s):  
J. Yahalom ◽  
D. F. Tessier ◽  
R. S. Timsit ◽  
A. M. Rosenfeld ◽  
D. F. Mitchell ◽  
...  

Copper/nickel multilayered thin-films prepared by electrodeposition have been examined in cross section by electron energy loss spectroscopy and high-resolution transmission electron microscopy. The results of the examinations provide the first direct experimental evidence of the large composition modulation across successive layers in the thin-film structure and the coherent nature of Cu/Ni interfaces.


2015 ◽  
Vol 6 ◽  
pp. 336-342 ◽  
Author(s):  
Jacques Perrin Toinin ◽  
Alain Portavoce ◽  
Khalid Hoummada ◽  
Michaël Texier ◽  
Maxime Bertoglio ◽  
...  

In this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO2, (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the Ge film at different process steps under different postannealing conditions. For the same postannealing conditions, the Ge film topology was shown to be similar for different implantation doses and different dopants. However, the film topology can be controlled by adjusting the postannealing conditions.


Sign in / Sign up

Export Citation Format

Share Document