Fracture and R-curves in high volume fraction Al2O3/Al composites

2000 ◽  
Vol 15 (5) ◽  
pp. 1131-1144 ◽  
Author(s):  
N. Nagendra ◽  
V. Jayaram

Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.

2006 ◽  
Vol 45 ◽  
pp. 1632-1639 ◽  
Author(s):  
Hideo Awaji ◽  
Seong Min Choi

Intra-type nanocomposites, in which nanosized second-phase particles are embedded within matrix grains, generate dislocations around the dispersed nanoparticles. The intra-type nanostructure induces a thermal expansion mismatch between the matrix and the dispersed particles, which will yield nanoscale stress distribution around the particles and generate lattice defects, such as dislocations. The dislocations of ceramics can be generated at elevated temperatures, become sessile dislocations at room temperature, and serve as nanocrack nuclei in highly stresses fields, e.g. at a main crack tip. The frontal process zone size ahead of a crack tip is expanded due to creation of nanocracks and hence the fracture toughness is improved. Annealing after sintered nanocomposites is important in controlling the dislocation activities. Appropriate annealing will disperse dislocations into the matrix grains. However, dislocations are sensitive to temperature, and higher temperature or longer annealing time result in dislocation disappearance and cause the reduction of the strength and fracture toughness of nanocomposites. In this study, commercially available γ-alumina agglomerated powder with high porosity was used to create the intra-type nanostructure. Nickel nitrate solution was infiltrated into nanopores of the γ-alumina agglomerates in vacuum. The alumina/nickel composite powder following reduction in hydrogen atmosphere was sintered using a pulse electric current sintering method. The volume fraction of nickel was about 3 vol %. After appropriate annealing, the highest fracture toughness was obtained to be 7.6 MPam1/2, which is two times higher than that of monolithic alumina.


2000 ◽  
Vol 15 (5) ◽  
pp. 1145-1153 ◽  
Author(s):  
N. Nagendra ◽  
V. Jayaram

The role of matrix microstructure on the fracture of Al-alloy composites with 60 vol% alumina particulates was studied. The matrix composition and microstructure were systematically varied by changing the infiltration temperature and heat treatment. Characterization was carried out by a combination of metallography, hardness measurements, and fracture studies conducted on compact tension specimens to study the fracture toughness and crack growth in the composites. The composites showed a rise in crack resistance with crack extension (R curves) due to bridges of intact matrix ligaments formed in the crack wake. The steady-state or plateau toughness reached upon stable crack growth was observed to be more sensitive to the process temperature rather than to the heat treatment. Fracture in the composites was predominantly by particle fracture, extensive deformation, and void nucleation in the matrix. Void nucleation occurred in the matrix in the as-solutionized and peak-aged conditions and preferentially near the interface in the underaged and overaged conditions. Micromechanical models based on crack bridging by intact ductile ligaments were modified by a plastic constraint factor from estimates of the plastic zone formed under indentations, and are shown to be adequate in predicting the steady-state toughness of the composite.


2014 ◽  
Vol 68 (4) ◽  
pp. 413-427 ◽  
Author(s):  
Mirjana Filipovic

The as-cast microstructure of Fe-Cr-C-V white irons consists of M7C3 and vanadium rich M6C5 carbides in austenitic matrix. Vanadium changed the microstructure parameters of phase present in the structure of these alloys, including volume fraction, size and morphology. The degree of martensitic transformation also depended on the content of vanadium in the alloy. The volume fraction of the carbide phase, carbide size and distribution has an important influence on the wear resistance of Fe-Cr-C-V white irons under low-stress abrasion conditions. However, the dynamic fracture toughness of Fe-Cr-C-V irons is determined mainly by the properties of the matrix. The austenite is more effective in this respect than martensite. Since the austenite in these alloys contained very fine M23C6 carbide particles, higher fracture toughness was attributed to a strengthening of the austenite during fracture. Besides, the secondary carbides which precipitate in the matrix regions also influence the abrasion behaviour. By increasing the matrix strength through a dispersion hardening effect, the fine secondary carbides can increase the mechanical support of the carbides. Deformation and appropriate strain hardening occur in the retained austenite of Fe-Cr-C-V alloys under repeated impact loading. The particles of precipitated M23C6 secondary carbides disturb dislocations movement and contribute to increase the effects of strain hardening in Fe-Cr-C-V white irons.


2000 ◽  
Author(s):  
Paul Moy ◽  
Jerome Tzeng

Abstract Fracture toughness properties of composite laminates were evaluated at a loading rate commonly observed in ordinance applications. The laminates are composed of IM7 graphite and a small volume fraction of S2 glass plies to form a cross-ply laminate. Fracture toughness appears to be very rate sensitive if the crack growth perpendicular to the plane dominated by glass/matrix property. Experimental data shows a 30–40% increase of fracture toughness for various layup as the loading rate was increase by 1000 times. The specimens examined under microscopic indicates the strengthening might due to different failure mechanism in the matrix. In addition, there is no visible rate effect if the crack propagation is perpendicular to the graphite dominant plane.


2018 ◽  
Vol 57 (1) ◽  
pp. 54-62 ◽  
Author(s):  
S.V. Bobylev ◽  
A.G. Sheinerman

Abstract A model is proposed describing the effect of crack bridging on the fracture toughness of ceramic/graphene composites. The dependences of the fracture toughness on the graphene content and the sizes of the graphene platelets are calculated in the exemplary case of yttria stabilized zirconia (YSZ)/graphene composites. The calculations predict that if crack bridging prevails over crack deflection during crack growth, the maximum toughening can be achieved in the case of long graphene platelets provided that the latter do not rupture and adhere well to the matrix. The model shows good correlation with the experimental data at low graphene concentrations.


2006 ◽  
Vol 978 ◽  
Author(s):  
Silvester John Noronha ◽  
Nasr M Ghoniem

AbstractWe present a model for the brittle - ductile transition in heterogenous metallic materials based on two dimensional discrete dislocation simulations of crack-tip plasticity. The sum of elastic fields of the crack and the emitted dislocations defines an elasto-plastic crack field. Effects of crack-tip blunting of the macrocrack are included in the simulations. The plastic zone characteristics are found to be in agreement with continuum models, with the added advantage that the hardening behavior comes out naturally in our model. The present model is composed of a macrocrack with microcracks ahead of its tip. These microcracks represent potential fracture sites at internal inhomogenities, such as brittle precipitates. Dislocations that are emitted from the crack-tip account for plasticity. When the tensile stress at the microcrack situated along the crack plane attains a critical value over a distance fracture is assumed to take place. The brittle-ductile transition curve is obtained by determining the fracture toughness at various temperatures. Factors that contribute to the sharp upturn in fracture toughness with temperature are found to be: the decrease in tensile stress ahead of the crack tip due to increase in blunting, and the increase in dislocation mobility. The inherent scatter in fracture toughness measurements are studied by using a size distribution for microcracks, distributed on the crack plane of the macrocrack. The scatter in fracture toughness measurements is found to be an effect of the size distribution of microcracks rather than their spatial distribution on the matrix ahead of the crack plane. When compared, the obtained results are in agreement with the existing experimental data.


2017 ◽  
Vol 24 (2) ◽  
pp. 195-202 ◽  
Author(s):  
Aiguo Liu ◽  
Da Li ◽  
Fanling Meng ◽  
Huanhuan Sun

AbstractThe volume fraction, dissolution, and segregation of WC particles in metal-matrix composites (MMCs) are critical to their wear resistance. Low carbon steel substrates were precoated with NiCrBSi coatings and processed with gas tungsten arc melt injection method to fabricate MMCs with high volume fraction of WC particles. The microstructures and wear resistance of the composites were investigated. The results showed that the volume fraction of WC particles increased with decreasing hopper height and was as high as 44% when hopper height was 100 mm. The dissolution of WC particles was minimal. The content of the alloying elements decreased from the top to the bottom of the matrix. More WC particles dissolved in the overlapping area, where Fe3W3C carbide blocks could be found. The wear loss of the MMCs after 40 min was 6.9 mg, which is 76 times less than that of the substrate after the 4 min test.


2011 ◽  
Vol 488-489 ◽  
pp. 521-524
Author(s):  
Aleksandar Davidkov ◽  
Roumen H. Petrov ◽  
Peter De Smet ◽  
Leo Kestens

The bending properties of high strength precipitation-hardening AA6016-type Al alloy thin sheets in pre-aged T4P temper state were studied in this work. Microstructural features like grain boundary particles distribution and volume fraction of the matrix strengthening phases were considered as factors controlling the mechanical properties and the fracture of this grade. Remarkable decrease in ductility, accompanied by severe deterioration of bendability occurred when coarse precipitates were found into the grain boundaries. The in-situ fracture sequence investigations as well as the post-failure surfaces observations indicated that grain boundary ductile fracture mechanisms were involved in the propagation of the cracks during bending. Heat treatment simulations were carried out and the results showed that the precise control of the technological parameters during production of these sheets is the key factor responsible for obtaining an appropriate combination of strength and bendability. Only by providing both, homogeneous distribution of the matrix strengthening phases and a favourable grain boundary structure, the severe and often contradictory requirements for the functional properties of these alloys can be successfully satisfied.


1990 ◽  
Vol 194 ◽  
Author(s):  
L. Xiao ◽  
Y. S. Kim ◽  
Reza Abbaschian

AbstractChemical compatibility between oxide coated Nb filament reinforcements and MoSi2 was investigated. It was determined that ZrO2, Al2O3, and mullite coatings were chemically compatible with both Nb and MoSi2. Comparison between coated and uncoated filaments indicated that the coatings reduced the thickness of the interaction zone. The fracture toughness of the Nb filament reinforced composites showed an increase, while W filament reinforced composite showed a decrease, in the toughness compared to that of the matrix. The results are discussed in terms of the mismatches in the coefficients of thermal expansion and the bonding characteristics of the reinforcement/matrix interface.


Sign in / Sign up

Export Citation Format

Share Document