Pressure-induced nanocrystallization of Zr55Al10Ni5Cu30 bulk metallic glass

2002 ◽  
Vol 17 (11) ◽  
pp. 2935-2939 ◽  
Author(s):  
Jia Zhang ◽  
K. Q. Qiu ◽  
A. M. Wang ◽  
H. F. Zhang ◽  
M. X. Quan ◽  
...  

The effect of pressure on the crystallization behavior of Zr55Al10Ni5Cu30 bulk metallic glass was investigated by differential scanning calorimetry, x-ray diffraction, and transmission electron microscopy. Although the crystallization products under high pressure were about the same as those under ambient pressure, the evident changes in the relative crystallization fraction of each phase were observed. The applied pressure enhanced the crystallization temperature. Pressure annealing of the bulk metallic glass produced a composite with dispersion of very fine nanocrystallites in the amorphous matrix. A full nanocrystallization was obtained for the sample annealed under 5 GPa at 793 K. The mechanism for the pressure-induced nanocrystallization is discussed.

2006 ◽  
Vol 21 (3) ◽  
pp. 597-607 ◽  
Author(s):  
S. Venkataraman ◽  
S. Scudino ◽  
J. Eckert ◽  
T. Gemming ◽  
C. Mickel ◽  
...  

Cu47Ti33Zr11Ni8Si1 metallic glass powder was prepared by gas atomization. Decomposition in the amorphous alloy and primary crystallization has been studied by differential scanning calorimetry (DSC), x-ray diffraction (XRD), and transmission electron microscopy (TEM). The glassy powder exhibits a broad DSC exotherm prior to bulk crystallization. Controlled annealing experiments reveal that this exotherm corresponds to a combination of structural relaxation and nanocrystallization. A uniform featureless amorphous contrast is observed in the TEM prior to the detection of nanocrystals of 4–6 nm in size. High-resolution TEM studies indicate that this nanocrystalline phase has a close crystallographic relationship with the γ–CuTi phase having a tetragonal structure. The product of the main crystallization event is also nanocrystalline, hexagonal Cu51Zr14, having dimensions of 20 nm. However, there is no evidence for possible amorphous phase separation prior to the nanocrystallization events.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 212
Author(s):  
Richard L. Rowland ◽  
Barbara Lavina ◽  
Kathleen E. Vander Kaaden ◽  
Lisa R. Danielson ◽  
Pamela C. Burnley

Understanding basic material properties of rare earth element (REE) bearing minerals such as their phase stability and equations of state can assist in understanding how economically viable deposits might form. Bastnäsite is the most commonly mined REE bearing mineral. We synthesized the lanthanum-fluoride end member, bastnäsite-(La) (LaCO3F), and investigated its thermal behavior and decomposition products from 298 K to 1173 K under ambient pressure conditions through thermogravimetric analysis, differential scanning calorimetry, evolved gas analysis, and high temperature powder X-ray diffraction. We also investigated the compressibility of bastnäsite-(La) via single crystal X-ray diffraction in diamond anvil cells at an ambient temperature up to 11.3 GPa and from 4.9 GPa to 7.7 GPa up to 673 K. At ambient pressure, bastnäsite-(La) was stable up to 598 K in air, where it decomposed into CO2 and tetragonal γ-LaOF. Above 948 K, cubic α-LaOF is stable. High temperature X-ray diffraction data were used to fit the Fei thermal equation of state and the thermal expansion coefficient α298 for all three materials. Bastnäsite-(La) was fit from 298 K to 723 K with V0 = 439.82 Å3, α298 = 4.32 × 10−5 K−1, a0 = −1.68 × 10−5 K−1, a1 = 8.34 × 10−8 K−1, and a2 = 3.126 K−1. Tetragonal γ-LaOF was fit from 723 K to 948 K with V0 = 96.51 Å3, α298 = 2.95×10−4 K−1, a0 = −2.41×10−5 K−1, a1 = 2.42×10−7 K−1, and a2 = 41.147 K−1. Cubic α-LaOF was fit from 973 K to 1123 K with V0 = 190.71 Å3, α298 = −1.12×10−5 K−1, a0 = 2.36×10−4 K−1, a1 = −1.73 × 10−7 K−1, and a2 = −17.362 K−1. An ambient temperature third order Birch–Murnaghan equation of state was fit with V0 = 439.82 Å3, K0 = 105 GPa, and K’ = 5.58.


2019 ◽  
Vol 58 (1) ◽  
pp. 304-312
Author(s):  
Ádám Révész ◽  
András Horváth ◽  
Gábor Ribárik ◽  
Erhard Schafler ◽  
David J. Browne ◽  
...  

Abstract Bulk metallic glass of Cu60Zr20Ti20 composition has been synthesized by copper mold casting. Slices of the as-cast glass has been subjected to severe plastic deformation by high-pressure torsion for different whole turns. The microstructure and the thermal behavior of the deformed disks have been investigated by X-ray diffraction and differential scanning calorimetry. It was confirmed that the initial compression preceding the high pressure torsion induces crystallized structure, which shows only minor further changes upon the severe plastic shear deformation achieved by twisting the sample. The X-ray line profiles have been evaluated by the Convolutional Whole Profile Fitting algorithm in order to determine the evolution of the microstructural parameters, such as the median and variance of the crystallite size distribution, average crystallite size and dislocation density as a function of the number of revolutions. Hardness measurements by nanoindentation have also been carried out on the as-cast alloys and the deformed disks.


2011 ◽  
Vol 412 ◽  
pp. 263-266
Author(s):  
Hong Wei Zhang ◽  
Li Li Zhang ◽  
Feng Rui Zhai ◽  
Jia Jin Tian ◽  
Can Bang Zhang

The higher mechanical strength of Al87Ce3Ni8.5Mn1.5 nanophase amorphous composites has been obtained with two methods. The first nanophase amorphous composites are directly produced by the single roller spin quenching technology. The method taken for the second nanophase amorphous composites is at first to obtain amorphous single-phase alloy, followed by annealed at different temperatures .The formative condition, the microstructure, the particle size, the volume fraction of α-Al phase and microhardness of nanophase amorphous composites etc have been investigated and compared by X-ray diffraction (XRD) and transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). The microstructure of composites produced by the second method is higher than the former, the fabricated material structure of the system is more uniform and the process is easier to control.


1991 ◽  
Vol 230 ◽  
Author(s):  
Toyohiko J. Konno ◽  
Robert Sinclair

AbstractThe crystallization of amorphous Si in a Al/Si multilayer (with a modulation length of about 120Å) was investigated using transmission electron microscopy, differential scanning calorimetry and X-ray diffraction. Amorphous Si was found to crystallize at about 175 °C with the heat of reaction of 11±2(kJ/mol). Al grains grow prior to the nucleation of crystalline Si. The crystalline Si was found to nucleate within the grown Al layers. The incipient crystalline Si initially grows within the Al layer and then spreads through the amorphous Si and other Al layers. Because of extensive intermixing, the original layered structure is destroyed. The Al(111) texture is also enhanced.


2008 ◽  
Vol 23 (11) ◽  
pp. 2880-2885 ◽  
Author(s):  
Herbert Willmann ◽  
Paul H. Mayrhofer ◽  
Lars Hultman ◽  
Christian Mitterer

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.


2011 ◽  
Vol 23 (25) ◽  
pp. 254204 ◽  
Author(s):  
J Bednarcik ◽  
S Michalik ◽  
M Sikorski ◽  
C Curfs ◽  
X D Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document