Synthesis of polystyrene-grafted carbon nanocapsules

2007 ◽  
Vol 22 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Hsuan-Ming Huang ◽  
Hung-Chieh Tsai ◽  
I-Chun Liu ◽  
Raymond Chien-Chao Tsiang

A novel polymeric composite material, polystyrene (PS)-grafted carbon nanocapsules (CNCs), has been prepared. sec-butyllithium was first used to introduce negative charges on CNCs, and these CNC carbanions acted then as initiators for anionic polymerization of styrene. Based on a weight loss at the decomposition temperature of the butyl groups, the quantity of the butyls attached to the CNC surface was determined as 1.18 wt%, corresponding to 0.25 mol% initiator per mol of carbon atom on the CNC surface. Furthermore, the decomposition temperature of butylated CNCs was lower than that of the pristine CNCs by nearly 200 °C. The polystyrene content in our PS-grafted CNC sample was approximately 20%, and the molecular weight of the grafted PS on the surface of CNCs was calculated as 1200 gmol−1. Compared with the molecular weight of the ungrafted PS, the molecular weight of grafted PS was lower, thus indicating rates of initiation and/or propagation for CNC-bound carbanions lower than those of the free sec-butyllithium. The PS-grafted CNCs had good dispersion in toluene, tetrahydrofuran, cyclohexane, and other common organic solvents in which polystyrene was dissolvable and thus indicated good compatibility when further blended with other styrenic polymers. The PS-grafted CNCs were characterized and examined by Fourier transform infrared, thermogravimetric analysis, atomic force microscopy, differential scanning calorimetry, ultraviolet-visible spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electron microscopy images indicated that the PS-grafted CNCs were homogeneous composites containing uniform polymer/CNC ratios.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Qingqing Wang ◽  
Guohui Li ◽  
Jinning Zhang ◽  
Fenglin Huang ◽  
Keyu Lu ◽  
...  

Single component nanofiller has shown some limitations in its performance, which can be overcome by hybrid nanofillers with two different components. In this work, montmorillonite (MMT)/graphene oxide (GO) hybrid nanofillers were formed by self-assembly and then incorporated into the polyacrylonitrile (PAN) nanofibers by electrospinning process. X-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) were utilized to analyze the structures of MMT/GO hybrid nanofillers. And the effects of MMT/GO hybrid nanofillers on the morphology, thermal stability, and mechanical properties of PAN/MMT/GO composite nanofibrous membrane were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and tensile test machine, respectively. The incorporation of MMT/GO hybrid nanofillers into PAN nanofibers showed a noticeable increase up to 30°C for the onset decomposition temperature and 1.32 times larger tensile strength than the pure PAN, indicating that the hybrid nanofiller is a promising candidate in improving thermal and mechanical properties of polymers.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Xiaozhou Su ◽  
Lei Li ◽  
Weihan Huang

Complex nanomicelles were prepared by sericin and type A gelatin with molecular weight of 5789 Da and 128664 Da separately. The assembling conditions were as follows: mass ratio (sericin/gelatin) was 1 : 1, protein concentration was 0.5%, temperature was 35°C, and assembling time was 18 hours. Scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and dynamic light scattering (DLS) were conducted to observe and characterize the complex nanomicelles. Results showed that the complex sericin/gelatin micelles was a kind of nanospindle micelles. The micelles had high electrochemical stability, thermal stability, antidilution stability, and storage stability.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 472
Author(s):  
Yanhong Fang ◽  
Ping Wang ◽  
Lifang Sun ◽  
Linhong Wang

Hydrophobic films are widely used in aerospace, military weapons, high-rise building exterior glass, and non-destructive pipeline transportation due to their antifouling and self-cleaning properties. This paper details the successful preparation of hydrophobic epoxy caged sesquioxane (EP-POSS) via two steps of simple organic synthesis, along with studies on the effects of viscosity and reaction time on the reaction. Interestingly, the EP-POSS presented a large contact angle of 125°, indicating its excellent hydrophobicity. The surface micromorphology was observed via FE-SEM (field emission scanning electron microscopy), transmission electron microscopy (TEM), and atomic force microscopy (AFM), and the structural composition and elemental contents were analyzed via X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectrometry (EDS). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) tests showed that EP-POSS had excellent thermal properties, and the first degradation reaction occurred at 354 °C. The mechanical performance and abrasion resistance results demonstrated that EP-POSS could be used in solar panels.


1995 ◽  
Vol 378 ◽  
Author(s):  
G. Kissinger ◽  
T. Morgenstern ◽  
G. Morgenstern ◽  
H. B. Erzgräber ◽  
H. Richter

AbstractStepwise equilibrated graded GexSii-x (x≤0.2) buffers with threading dislocation densities between 102 and 103 cm−2 on the whole area of 4 inch silicon wafers were grown and studied by transmission electron microscopy, defect etching, atomic force microscopy and photoluminescence spectroscopy.


1995 ◽  
Vol 403 ◽  
Author(s):  
G. Bai ◽  
S. Wittenbrock ◽  
V. Ochoa ◽  
R. Villasol ◽  
C. Chiang ◽  
...  

AbstractCu has two advantages over Al for sub-quarter micron interconnect application: (1) higher conductivity and (2) improved electromigration reliability. However, Cu diffuses quickly in SiO2and Si, and must be encapsulated. Polycrystalline films of Physical Vapor Deposition (PVD) Ta, W, Mo, TiN, and Metal-Organo Chemical Vapor Deposition (MOCVD) TiN and Ti-Si-N have been evaluated as Cu diffusion barriers using electrically biased-thermal-stressing tests. Barrier effectiveness of these thin films were correlated with their physical properties from Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Secondary Electron Microscopy (SEM), and Auger Electron Spectroscopy (AES) analysis. The barrier failure is dominated by “micro-defects” in the barrier film that serve as easy pathways for Cu diffusion. An ideal barrier system should be free of such micro-defects (e.g., amorphous Ti-Si-N and annealed Ta). The median-time-to-failure (MTTF) of a Ta barrier (30 nm) has been measured at different bias electrical fields and stressing temperatures, and the extrapolated MTTF of such a barrier is > 100 year at an operating condition of 200C and 0.1 MV/cm.


2008 ◽  
Vol 8 (8) ◽  
pp. 4081-4085 ◽  
Author(s):  
Y. Batra ◽  
D. Kabiraj ◽  
D. Kanjilal

Germanium (Ge) nanoparticles have attracted a lot of attention due to their excellent optical properties. In this paper, we report on the formation of Ge nanoparticles embedded in GeO2 matrix prepared by electron beam evaporation and subsequent annealing. Transmission electron microscopy (TEM) studies clearly indicate the formation of Ge nanocrystals in the films annealed at 500 °C. Fourier transform infrared (FTIR) spectroscopic studies are carried out to verify the evolution of the structure after annealingat each stage. Micro-Raman analysis also confirms the formation of Ge nanoparticles in the annealed films. Development of Ge nanoparticles is also established by photoluminescence (PL) analysis. Surface morphology study is carried out by atomic force microscopy (AFM). It shows the evolution of granular structure of the films with increasing annealing temperature.


2017 ◽  
Vol 23 (3) ◽  
pp. 661-667 ◽  
Author(s):  
Yue Li ◽  
Di Zhang ◽  
Ilker Capoglu ◽  
Karl A. Hujsak ◽  
Dhwanil Damania ◽  
...  

AbstractEssentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.


Sign in / Sign up

Export Citation Format

Share Document