Effect of Nanocavities on the Thermoelectric Properties of Polycrystalline Silicon

2011 ◽  
Vol 1329 ◽  
Author(s):  
Ekaterina Selezneva ◽  
Andrea Arcari ◽  
Gilles Pernot ◽  
Elisabetta Romano ◽  
Gianfranco Cerofolini ◽  
...  

ABSTRACTNanostructuring has opened new ways to increase the thermoelectric performance of a host of materials, mainly by decreasing their thermal conductivity κ while preserving the Seebeck coefficient S and electrical conductivity σ. The thermoelectric properties of degenerated polycrystalline silicon films with nanocavities (NCs) have been studied as a function of annealing temperature upon isochronous annealings in argon carried out every 50°C in the range 500 – 1000°C which were used to modify the shape of the NCs. We found that presence of the NCs had no negative effect on the electronic properties of the system. The measured values of S and σ were close to those previously reported for the blank polycrystalline silicon films with the same doping level. The thermal conductivity was also found to be close to the value measured on the blank sample, about half of the reported value in polycrystals. This led to a power factor of 15.2 mWm-1K-2 and a figure of merit of 0.18 at 300 K.

2008 ◽  
Vol 368-372 ◽  
pp. 547-549
Author(s):  
Jun Jiang ◽  
Ya Li Li ◽  
Gao Jie Xu ◽  
Ping Cui ◽  
Li Dong Chen

In the present study, n-type (Bi2Se3)x(Bi2Te3)1-x crystals with various chemical compositions were fabricated by the zone melting method. Thermoelectric properties, including Seebeck coefficient (α), electrical conductivity (σ) and thermal conductivity (κ), were measured in the temperature range of 300-500 K. The influence of the variations of Bi2Te3 and Bi2Se3 content on thermoelectric properties was studied. The increase of Bi2Se3 content (x) caused an increase in carrier concentration and thus an increase of σ and a decrease of α. The maximum figure of merit (ZT = α2σT/κ) of 0.87 was obtained at about 325 K for the composition of 93%Bi2Te3-7%Bi2Se3 with doping TeI4.


2011 ◽  
Vol 695 ◽  
pp. 65-68 ◽  
Author(s):  
Kwan Ho Park ◽  
Il Ho Kim

Co4-xFexSb12-ySny skutterudites were synthesized by mechanical alloying and hot pressing, and thermoelectric properties were examined. The carrier concentration increased by doping and thereby the electrical conductivity increased compared with intrinsic CoSb3. Every specimen had a positive Seebeck coefficient. Fe doping caused a decrease in the Seebeck coefficient but it could be enhanced by Fe/Sn double doping possibly due to charge compensation. The thermal conductivity was desirably very low and this originated from ionized impurity-phonon scattering. Thermoelectric properties were improved remarkably by Fe/Sn doping, and a maximum figure of merit, ZT = 0.5 was obtained at 723 K in the Co3FeSb11.2Sn0.8 specimen.


2008 ◽  
Vol 1100 ◽  
Author(s):  
Sadik Guner ◽  
Satilmis Budak ◽  
Claudiu I Muntele ◽  
Daryush Ila

AbstractMonolayer thin films of YbBiPt and YBiPt have been produced with 560 nm and 394 nm thick respectively in house and their thermoelectric properties were measured before and after MeV ion bombardment. The energy of the ions were selected such that the bombarding Si ions stop in the silicon substrate and deposit only electronic energy by ionization in the deposited thin film. The bombardment by 5.0 MeV Si ions at various fluences changed the homogeneity as well as reducing the internal stress in the films thus affecting the thermal, electrical and Seebeck coefficient of thin films. The stoichiometry of the thin films was determined using Rutherford Backscattering Spectrometry, the thickness has been measured using interferometry and the electrical conductivity was measured using Van der Pauw method. Thermal conductivity of the thin films was measured using an in-house built 3ω thermal conductivity measurement system. Using the measured Seebeck coefficient, thermal conductivity and electrical conductivity we calculated the figure of merit (ZT). We will report our findings of change in the measured figure of merit as a function of bombardment fluence.


2009 ◽  
Vol 66 ◽  
pp. 17-20 ◽  
Author(s):  
Mei Jun Yang ◽  
Wei Jun Luo ◽  
Qiang Shen ◽  
Hong Yi Jiang ◽  
Lian Meng Zhang

Nanocomposites and heavy doping both are regarded as effective way to improve materials’ thermoelectric properties. 0.7at% Bi-doped Mg2Si nanocomposites were prepared by spark plasma sintering. Results of thermoelectric properties tests show that the doping of Bi atom effectively improves the electrical conductivity of Mg2Si,and the nanocomposite structures are helpful to reduce thermal conductivity and increase Seebeck coefficient, hence improving the thermoelectric performance. A maximum dimensionless figure of merit of 0.8 is obtained for the Bi-doped Mg2Si nanocomposite with 50 wt % nanopowder inclusions at 823K, about 63% higher than that of Bi-doped Mg2Si sample without nanopowder inclusions and 119% higher than that of microsized Mg2Si sample without Bi-doped, respectively.


2014 ◽  
Vol 602-603 ◽  
pp. 906-909 ◽  
Author(s):  
Yao Chun Liu ◽  
Jun Fu Liu ◽  
Bo Ping Zhang ◽  
Yuan Hua Lin

We report on the effect of Ni doping on the thermoelectric properties of p-type BiCuSeO oxyselenide, with layer structure composed of conductive (Cu2Se2)2-layers alternately stacked with insulating (Bi2O2)2+layers along c axis. After doping with Ni, enhanced electrical conductivity coupled with a moderate Seebeck coefficient leads to a power factor of ~231 μwm-1K-2at 873 K. Coupled to low thermal conductivity, ZT at 873 K is increased from 0.35 for pristine BiCuSeO to 0.39 for Bi0.95Ni0.05CuSeO. However, the efficiency of Ni doping in the insulating (Bi2O2)2+layer is low, and this doping only leads to a limited increase of the hole carriers concentration. Therefore Ni doped BiCuSeO has relatively low electrical conductivity which makes its thermoelectric figure of merit much lower than that of Ca, Sr, Ba and Pb doped BiCuSeO.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Mi-kyung Han ◽  
Huijun Kong ◽  
Ctirad Uher ◽  
Mercouri G Kanatzidis

AbstractWe performed comparative investigations of the Ag1-xPb18MTe20 (M = Bi, Sb) (x = 0, 0.14, 0.3) system to better understand the roles of Sb and Bi on the thermoelectric properties. In both systems, the electrical conductivity nearly keeps the same values, while the Seebeck coefficient decreases dramatically in going from Sb to Bi. Compared to the lattice thermal conductivity of PbTe, that of AgPb18BiTe20 is substantially reduced. The lattice thermal conductivity of the Bi analog, however, is higher than that of AgPb18SbTe20 and this is attributed largely to the decrease in the degree of mass fluctuation between the nanostructures and the matrix (for the Bi analog). As a result the dimensionless figure of merit ZT of Ag1-xPb18MTe20 (M = Bi) is found to be smaller than that of Ag1-xPb18MTe20 (M = Sb).


1998 ◽  
Vol 545 ◽  
Author(s):  
Ke-Feng Cai ◽  
Ce-Wen Nan ◽  
Xin-Min Min

AbstractB4C ceramics doped with various content of Si (0 to 2.03 at%) are prepared via hot pressing. The composition and microstructure of the ceramics are characterized by means of XRD and EPMA. Their electrical conductivity and Seebeck coefficient of the samples are measured from room temperature up to 1500K. The electrical conductivity increases with temperature, and more rapidly after 1300K; the Seebeck coefficient of the ceramics also increases with temperature and rises to a value of about 320μVK−1. The value of the figure of merit of Si-doped B4C rises to about 4 × 10−4K−1 at 1500K.


2021 ◽  
Vol 317 ◽  
pp. 28-34
Author(s):  
Joon Hoong Lim

Thermoelectric materials has made a great potential in sustainable energy industries, which enable the energy conversion from heat to electricity. The band structure and thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 have been investigated. The bulk pellets were prepared from analytical grade ZnO, NiO and Fe2O3 powder using solid-state method. It was possible to obtain high thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 by controlling the ratios of dopants and the sintering temperature. XRD analysis showed that the fabricated samples have a single phase formation of cubic spinel structure. The thermoelectric properties of Ni(x)Zn(1-x)Fe2O4 pellets improved with increasing Ni. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The electrical conductivity of Ni(x)Zn(1-x)Fe2O4 (x = 0.0) is (0.515 x10-3 Scm-1). The band structure shows that ZnxCu1-xFe2O4 is an indirect band gap material with the valence band maximum (VBM) at M and conduction band minimum (CBM) at A. The band gap of Ni(x)Zn(1-x)Fe2O4 increased with increasing Ni content. The increasing band gap correlated with the lower electrical conductivity. The thermal conductivity of Ni(x)Zn(1-x)Fe2O4 pellets decreased with increasing Ni content. The presence of Ni served to decrease thermal conductivity by 8 Wm-1K-1 over pure samples. The magnitude of the Seebeck coefficient for Ni(x)Zn(1-x)Fe2O4 pellets increased with increasing amounts of Ni. The figure of merit for Ni(x)Zn(1-x)Fe2O4 pellets and thin films was improved by increasing Ni due to its high Seebeck coefficient and low thermal conductivity.


2021 ◽  
Author(s):  
Bo Feng

Abstract The effect of Ti doped at Cu site on the thermoelectric properties of BiCuSeO was studied by experimental method and first principles calculation. The results show that Ti doping can cause the lattice contraction and decrease the lattice constant. Ti doping can increase the band gap and lengthen the Cu/Ti-Se bond, resulting in the decrease of carrier concentration. Ti doping can reduce the effective mass and the Bi-Se bond length, correspondingly improve the carrier mobility. Ti doping can decrease the density of states of Cu-3d and Se-4p orbitals at the top of valence band, but Ti-4p orbitals can obviously increase the density of states at the top of valence band and finally increase the electrical conductivity in the whole temperature range. With the decrease of effective mass, Ti doping would reduce the Seebeck coefficient, but the gain effect caused by the increase of electrical conductivity is more than the benefit reduction effect caused by the decrease of Seebeck coefficient, and the power factor shows an upward trend. Ti doping can reduce Young's modulus, lead to the increase of defect scattering and strain field, correspondingly reduce the lattice thermal conductivity and total thermal conductivity. It is greatly increased for the ZT values in the middle and high temperature range, with the highest value of 1.04 at 873 K.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Pornsiri Wanarattikan ◽  
Piya Jitthammapirom ◽  
Rachsak Sakdanuphab ◽  
Aparporn Sakulkalavek

In this work, stoichiometric Sb2Te3 thin films with various thicknesses were deposited on a flexible substrate using RF magnetron sputtering. The grain size and thickness effects on the thermoelectric properties, such as the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and thermal conductivity (k), were investigated. The results show that the grain size was directly related to film thickness. As the film thickness increased, the grain size also increased. The Seebeck coefficient and electrical conductivity corresponded to the grain size of the films. The mean free path of carriers increases as the grain size increases, resulting in a decrease in the Seebeck coefficient and increase in electrical conductivity. Electrical conductivity strongly affects the temperature dependence of PF which results in the highest value of 7.5 × 10−4 W/m·K2 at 250°C for film thickness thicker than 1 µm. In the thermal conductivity mechanism, film thickness affects the dominance of phonons or carriers. For film thicknesses less than 1 µm, the behaviour of the phonons is dominant, while both are dominant for film thicknesses greater than 1 µm. Control of the grain size and film thickness is thus critical for controlling the performance of Sb2Te3 thin films.


Sign in / Sign up

Export Citation Format

Share Document