Size Effects in Bi-Sb Solid Solutions Thin Films

2011 ◽  
Vol 1314 ◽  
Author(s):  
Elena I. Rogacheva ◽  
Dar’ya S. Orlova ◽  
Mildred S. Dresselhaus ◽  
Shuang Tang

ABSTRACTThe room-temperature dependences of the electrical conductivity σ, Seebeck coefficient S, Hall coefficient RH, and the thermoelectric power factor P on the thickness (d=10–300 nm) of the thin films grown on mica substrates by thermal evaporation in vacuum of Bi-Sb solid solutions crystals with 4.5 at.% Sb were obtained. It was established that an increase in d up to ~ 200 nm leads to a change in kinetic coefficients and that in the thickness dependences of the thermoelectric properties, quantum oscillations were observed. It was shown that the monotonic component of the σ(T) dependence can be satisfactorily approximated by theoretical calculations based on the classical Fuchs - Sondheimer theory. The theoretically estimated period of oscillations is in a good agreement with the experimentally observed period.

2006 ◽  
Vol 517 ◽  
pp. 173-182
Author(s):  
Nadeer Aljaroudi ◽  
Taiju Tsuboi

Photoluminescence (PL) measurements have been made for a spin-coated thin film of phosphorescent tris(2-phenylpyridine) iridium [Ir(ppy)3] doped in N,N’-bis (3-methylphenyl)-N, N’-bis(phenyl)-benzidine (TPD) host material in the temperature range from 10 K to room temperature. When temperature is increased from 10 K to 300 K, the PL intensity of Ir(ppy)3 increases from 10 K and decreases above about 200 K. Theoretical calculations are undertaken for the temperature dependence using (1) a three-level model where three zero-field splitting substates are generated in the triplet state of Ir(ppy)3 and (2) endothermic energy transfer from the TPD host to the Ir(ppy)3 guest, and (3) energy diffusion from the excited TPD to the neighboring unexcited TPD. A good agreement was obtained between the measured and calculated temperature dependences of the PL intensity.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
M. F. A. Alias ◽  
A. A. J. Al-Douri ◽  
E. M. N. Al-Fawadi ◽  
A. A. Alnajjar

Results of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5 μm have been deposited on glass substrates by flash thermal evaporation method at room temperature, under vacuum at constant deposition rate. These films were annealed under vacuum around 10−6Torr at different temperatures up to 523 K. The composition of the elements in alloys was determined by standard surfaces techniques such as atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF), and the results were found of high accuracy and in very good agreement with the theoretical values. The structure for alloys and films is determined by using X-ray diffraction. This measurement reveals that the structure is polycrystalline with cubic structure and there are strong peaks at the direction (200) and (111). The effect of heat treatment on the crystalline orientation, relative intensity, and grain size of films is presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


MRS Advances ◽  
2019 ◽  
Vol 4 (24) ◽  
pp. 1409-1415
Author(s):  
Akshita Mishra ◽  
Soumen Saha ◽  
Henam Sylvia Devi ◽  
Abhisek Dixit ◽  
Madhusudan Singh

AbstractWearable and bio-implantable health monitoring applications require flexible memory devices that can be used to locally store body vitals prior to transmission or to support local data processing in distributed smart systems. In recent years, non-volatile resistive random access memories composed of oxide-based insulators such as hafnium oxide and niobium pentoxide have attracted a great deal of interest. Unfortunately, hafnium and niobium are not low-cost materials and may also present health challenges. In this work, we have explored the alternative of using titanium dioxide as the insulating oxide using a low-cost solution-phase deposition process. Aqueous sol deposited thin films were deposited on standard RCA-cleaned commercial thermal silicon dioxide (500 nm) wafer (500 µm). Patterned bottom contacts Cr/Au (∼200/300 Å) using shadow masks were deposited on the substrate using successive DC sputtering, and thermal evaporation, respectively at 5 X 10-6 Torr. A sol was prepared using titanium (IV) butoxide as precursor hydrolysed under water and ethanol to form a colloidal solution (sol) at 50°C under constant stirring. Powder X-Ray Diffraction (PXRD) scans of calcined (from sol at 750°C) nanoparticles show a mixture of anatase and rutile phases, confirming the composition of the material. The sol was slowly cooled to room temperature before being spin coated at low rotational speeds on to the substrate in multiple steps involving several spin coating and drying steps to form a uniform film. Top contacts (Ag) of thickness (∼500 Å) were deposited on the sol-deposited thin films using thermal evaporation. The resulting devices were coated with a thick layer of polydimethylsiloxane (PDMS) using a 10:1 ratio of base elastomer and curing agent respectively. After drying the PDMS, resistance measurements were carried out. A high resistance state was detected prior to electroforming in the air at ∼5 MΩ which remains nearly unchanged (∼4.3 MΩ) when dipped in a ∼7.4 pH phosphate buffer solution (equivalent to human blood’s pH (reference average value ∼7.4 pH)). Unencapsulated devices (UM1) were further characterized in air using a Keithley 4200-SCS semiconductor parameter analyzer in dual sweep mode to observe repeatable hysteresis behavior with a large difference between trace and retrace R-V characteristics (∼50±3% over a pristine device), which compares favorably with recent data in the literature on high-performance sputtered TiO2 memristors. Unchanged retention ratio using biocompatible device materials and encapsulation suggests that these devices can be used for biomedical implantable sensor electronics.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.


2013 ◽  
Vol 774-776 ◽  
pp. 811-815 ◽  
Author(s):  
Jian Ma

V3+ions doped YAG crystals were grown using the Czochralski method in a highly pure argon atmosphere. The transmission spectrum of trivalent vanadium in YAG crystal has been measured at room temperature. Eight bands were observed in which two bands centered at 690nm (14493cm-1) and 1490nm (6711cm-1) are reported for the first time. By using the crystal-field theory and introducing the average covalent factor model, we also presented the theoretical calculations of the energy level splitting of tetrahedrally coordinated V3+impurity systems in YAG crystal. These calculation results are in good agreement with the optical experiment data.


2012 ◽  
Vol 26 (31) ◽  
pp. 1250137 ◽  
Author(s):  
M. AMIRHOSEINY ◽  
Z. HASSAN ◽  
S. S. NG ◽  
L. S. CHUAH ◽  
M. A. AHMAD ◽  
...  

We have fabricated photoconductors of indium nitride (InN) grown by radio frequency (RF) sputtering. The InN thin films were deposited on Si (100), Si (110) and Si (111) substrates at room temperature. The Ag/Al contact has been deposited by thermal evaporation in vacuum (10-5 Torr ) and then annealed under the flowing of the nitrogen gas environment in order to relieve stress and also induce any favorable reactions between metals and the semiconductor. Current–voltage (I–V) measurements after heat treatment at 400°C were carried out for samples in dark and illumination conditions. It was found that Ag/Al formed a good ohmic contact on top of InN . In addition, the characteristics of the contacts were significantly affected by the orientation of substrates.


Open Physics ◽  
2005 ◽  
Vol 3 (1) ◽  
Author(s):  
Abraham Varghese ◽  
C. Menon

AbstractThin films of mixed of Copper Phthalocyanine (CuPc) and Nickel Phthalocyanine (NiPc) are deposited onto a pure glass substrate by a simultaneous thermal evaporation technique at room temperature. The material D.C. electrical conductivity of films at room temperature and also films annealed at 523 K has been investigated. The optical absorption and band gaps of the films are also measured. The results show that the electrical resistance is lower for the mixed films compared with the pure samples and also the optical band gap decreases for the mixed samples compared to the pure samples.


1975 ◽  
Vol 30 (1) ◽  
pp. 38-43
Author(s):  
J. Szydłowski

Abstract Hydrogen isotope fractionation between hydrogen dichloride ion in the condensed phase and gaseous hydrogen chloride has been studied both theoretically and experimentally. Quite good agreement between the experimental tritium fractionation factor and that theoretically calculated for two sets of vibrational data was found. Theoretical calculations of the fractionation factors of both deuterium and tritium over the large temperature range of 100-2000 K revealed some anomalies (minima and crossover points) in their temperature dependences. The relative tritium-deuterium isotope effect has also been discussed within the framework of the presently accepted statistical-thermodynamic theory in the harmonic approximation and recent works by Stern et al.


Author(s):  
A. Bendjerad ◽  
A. Benhaya ◽  
S. Boukhtache ◽  
M. Zergoug ◽  
K. Benyahia

In the present work, thin films of Cr/NiO/Ni are deposited on glass substrates using RF magnetron sputteringtechnique. The uniformity and homogeneity of the prepared films were controlled by varying the power of the source, the target-substrate distance and the pressure of the plasma gas which is argon. In order to test the Preisach Model, we carried outmeasurements according to two directions: parallel and perpendicular to the substrate plane using a Vibrating SampleMagnetometer at room temperature. Good agreement has been obtained by comparing the experimental hysteresis loops to theones determined using Preisach model. We conclude that this model is powerful in predicting the magnetic properties ofmultilayer systems. # Cr/NiO/Ni #MAGNETRON_SPUTTERING #PREISACH MODEL #MAGNETIC_HYSTERESIS


Sign in / Sign up

Export Citation Format

Share Document