Conductive Nano-brush Synthesized by Physical Grafting of Conducting Polymers on Carbon Nanotube

2011 ◽  
Vol 1304 ◽  
Author(s):  
Kaushalkumar Purohit ◽  
Maureen Mirville ◽  
Sze C. Yang ◽  
Arun Shukla ◽  
Vijaya B. Chalivendra

ABSTRACTWe report a novel method for synthesizing electrically conductive nano-brush (CNB) by physical grafting of organic conducting polymers on carbon nano tubes (CNT). The objective for this synthesis is to produce nano tubes having a CNT stem coated with flexible electronic conducting polymers. The nano-brush is to be blended into common polymers (e.g. epoxy, polyurethane, and poly(vinyl alcohol)) to form electrically conductive composite material. The flexible organic conducting polymer in CNB is a potentially sensitive electronic probe for mechanically induced nano-deformation of the composite because it is molecularly entangled with the host polymers. The electrical networks of CNB embedded in polymeric composites are potentially useful as in situ sensors for monitoring material deformation with an unprecedented level of sensitivity. The composite material is “smart” in the sense that it self-reports the structural “health” before load induced material failure.Our method for grafting conducting polymer does not require chemical reactions with the surface atoms of the carbon nano tube. We used physical adsorption to graft electronic conducting polymer to CNT. We first synthesized a water-soluble electronic conducting polymer which is a molecular complex between poly(acrylic acid) and polyaniline. The CNT solid were dispersed and un-bundled by sonnication in the conducting polymer solution. Due to the high affinity between CNT and the conducting polymer, the surface of CNT can be fully covered with the conducting polymer. The experimental data is consistent with a structure of nano brush with high density of conducting polymers grafted on the CNT surface.

2015 ◽  
Vol 35 (8) ◽  
pp. 731-741 ◽  
Author(s):  
Andrzej Katunin ◽  
Katarzyna Krukiewicz

Abstract This article deals with the electrical conductivity of a composite of two polymers, one of which is a conducting polymer, whereas the second is a dielectric. The problem was formulated within the framework of electrical percolation, i.e., the percolation thresholds, which allow for a high electrical conductivity, is under investigation. For this purpose, a numerical model was developed, and its parameters were analyzed and discussed. Based on the determined thresholds, it was possible to evaluate the weight ratios of the conducting-dielectric polymers in a composite. The proposed approach allows for reducing the manufacturing cost of composite material with respect to conducting polymers with simultaneous retaining of high conductance properties of conducting polymers, as well as durability and flexibility of dielectrics.


1993 ◽  
Vol 328 ◽  
Author(s):  
Alan G. MacDiarmid ◽  
Arthur J. Epstein

ABSTRACTSince their discovery 16 years ago, the field of intrinsically conducing polymers — “synthetic Metals” — has developed at an unexpectedly rapid rate. The concept of “doping” is the unifying theme which distinguishes this class of organic polymers — “conducting polymers” — from all others. Doping results in dramatic electronic and magnetic changes with a concomitant increase in conductivity to, or approaching, the metallic regime. Doping phenomena and the chief types of dopable organic polymers are described with particular emphasis on polyaniline, which is now probably the most actively-studied conducting polymer. It has been commercialized on a relatively large scale and presently appears to be the leading conducting polymer for technology. It shows considerable promise for electromagnetic interference (EMI) shielding and as a gas separation Membrane, and is currently used in commercial rechargeable batteries. Polypyrrole is used commercially in capacitors and as an electrically conductive coating on conventional fabrics. Additional potential uses of conducting polymers such as light-emitting diodes, electrochromic windows, chemical sensors, etc. are also described briefly.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1610
Author(s):  
Jong Won Kim ◽  
Jin-Hae Chang

Herein, poly(amic acid) (PAA) was synthesized using 4,4’-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as a dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane (6FAm) and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAm-OH) as diamines. Poly(vinyl alcohol) (PVA) at various contents (0–5.0 wt%) was blended with PAA to prepare a composite material. Then, colorless and transparent polyimide (CPI) composite films were prepared by applying various stages of heat treatment using the PAA/PVA blend film as a precursor. These film-type composites were immersed in water to completely dissolve PVA, a water-soluble polymer, and their pore sizes were investigated to determine their potential as a porous membrane. According to the results of scanning electronic microscopy (SEM), as the concentration of PVA increased from 0 to 5.0 wt% in the CPI/PVA composite films, the size of the pores resulting from the dissolution of water-soluble PVA increased. Further, the micrometer-sized pores were uniformly dispersed in the CPI films. The thermal properties, morphology, and optical transparency of the two types of CPI membranes synthesized using 6FAm and 6FAm-OH monomers were examined and compared.


Author(s):  
V.V. Pischanskaya ◽  
◽  
M.V. Hubynskyi ◽  
A.Yu. Usenko ◽  
A.V. Sybir ◽  
...  

The article presents the results of the study aimed at establishing the main process parameters of the preparation of an electrically conductive composite material containing silicon carbide, graphite, aluminous cement and sodium silicate. This composite material can be used as a heating element in heat accumulators for the operating temperature range of 600–10000C. The effects of the amount of sodium silicate within the range of 12–18 wt.% and the compacting pressure within the range of 40-70 N / mm2 on the changes in the properties of the samples after drying were investigated. It was established that the mechanical strength of the samples of 34.2 N mm–2 and 33.4 N mm–2 can be achieved at the compacting pressure of 60 N mm–2 and 50 N mm–2 and the sodium silicate content of 14 wt.% and 16 wt.%, respectively. It was shown that a porous microstructure of the composite is formed in the course of samples annealing at the temperatures of 600–10000C due to physicochemical processes of transformations of sodium silicate and its interaction with aluminous cement; this porous microstructure is characterized by open porosity in the range of 23.14–25.11% and mechanical strength in the range of 33.2–32.0 N mm–2. The fabricated composite material after its annealing at 10000C shows a low electrical resistivity of 0.06710–2–0.01410–2 Ohmm at the electric current of 28–94 A and the voltage of 19.2–13.2 V.


2021 ◽  
Author(s):  
Aranee Pleng Teepakakorn ◽  
Makoto Ogawa

Water-induced self-healing materials were prepared by the hybridization of a water-soluble polymer, poly(vinyl alcohol), with a smectite clay by mixing in an aqueous media and subsequent casting. Without using chemical...


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 83
Author(s):  
Cláudia Mouro ◽  
Colum P. Dunne ◽  
Isabel C. Gouveia

Wounds display particular vulnerability to microbial invasion and infections by pathogenic bacteria. Therefore, to reduce the risk of wound infections, researchers have expended considerable energy on developing advanced therapeutic dressings, such as electrospun membranes containing antimicrobial agents. Among the most used antimicrobial agents, medicinal plant extracts demonstrate considerable potential for clinical use, due primarily to their efficacy allied to relatively low incidence of adverse side-effects. In this context, the present work aimed to develop a unique dual-layer composite material with enhanced antibacterial activity derived from a coating layer of Poly(vinyl alcohol) (PVA) and Chitosan (CS) containing Agrimonia eupatoria L. (AG). This novel material has properties that facilitate it being electrospun above a conventional cotton gauze bandage pre-treated with 2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (TEMPO). The produced dual-layer composite material demonstrated features attractive in production of wound dressings, specifically, wettability, porosity, and swelling capacity. Moreover, antibacterial assays showed that AG-incorporated into PVA_CS’s coating layer could effectively inhibit Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth. Equally important, the cytotoxic profile of the dual-layer material in normal human dermal fibroblast (NHDF) cells demonstrated biocompatibility. In summary, these data provide initial confidence that the TEMPO-oxidized cotton/PVA_CS dressing material containing AG extract demonstrates adequate mechanical attributes for use as a wound dressing and represents a promising approach to prevention of bacterial wound contamination.


2011 ◽  
Vol 2 (4) ◽  
pp. 131-148 ◽  
Author(s):  
Francis Vidya ◽  
Subin S. Raghul ◽  
Sarita G Bhat ◽  
Eby Thomas Thachil

The main objective of this study was to enhance the rate of UV and biodegradation of polyethylene by incorporating biodegradable materials and prooxidants. Prooxidants such as transition metal complexes are capable of initiating photooxidation and polymer chain cleavage, rendering the product more susceptible to biodegradation. In this work, the effect of (1) a metallic photoinitiator, cobalt stearate, and (2) different combinations of cobalt stearate and vegetable oil on the photooxidative degradation of linear low-density poly(ethylene)-poly(vinyl alcohol) (LLDPE/PVA) blend films has been investigated. For this, film-grade LLDPE was blended with different proportions of PVA. PVA is widely used in the industrial field, and recently it has attracted increasing attention as a water-soluble biodegradable polymer. Cobalt stearate and vegetable oil were added to the blends as prooxidants. The blends were prepared by melt mixing in a Thermo HAAKE Polylab system. Thin films containing these additives were prepared by a subsequent compression moulding process. The effect of UV exposure on LLDPE/PVA films in the presence as well as absence of these additives was investigated. Tensile properties, FTIR spectra, and scanning electron microscopy (SEM) were employed to investigate the degradation behaviour. It was found


Sign in / Sign up

Export Citation Format

Share Document