Defects and Doping in Nanocrystalline Silicon-Germanium Devices

2014 ◽  
Vol 1666 ◽  
Author(s):  
Siva Konduri ◽  
Watson Mulder ◽  
Vikram L. Dalal

ABSTRACTNanocrystalline Silicon-Germanium (Si,Ge) is a potentially useful material for photovoltaic devices and photo-detectors. Its bandgap can be controlled across the entire bandgap region from that of Si to that of Ge by changing the alloy composition during growth. In this work, we study the fabrication and electronic properties of nanocrystalline devices grown using PECVD techniques. We discovered that upon adding Ge to Si during growth, the intrinsic layer changes from n-type to p-type. We can change it back to n-type by using ppm levels of phosphorus, and make reasonable quality devices when phosphine gas was added to the deposition mix. We also measured the defect density spectrum using capacitance frequency techniques, and find that defect density decreases systematically as more phosphine is added to the gas phase. We also find that the ratio of Germanium to Silicon in the solid phase is higher than the ratio in the gas phase.

2020 ◽  
Vol 65 (3) ◽  
pp. 236
Author(s):  
R. M. Rudenko ◽  
O. O. Voitsihovska ◽  
V. V. Voitovych ◽  
M. M. Kras’ko ◽  
A. G. Kolosyuk ◽  
...  

The process of crystalline silicon phase formation in tin-doped amorphous silicon (a-SiSn) films has been studied. The inclusions of metallic tin are shown to play a key role in the crystallization of researched a-SiSn specimens with Sn contents of 1–10 at% at temperatures of 300–500 ∘C. The crystallization process can conditionally be divided into two stages. At the first stage, the formation of metallic tin inclusions occurs in the bulk of as-precipitated films owing to the diffusion of tin atoms in the amorphous silicon matrix. At the second stage, the formation of the nanocrystalline phase of silicon occurs as a result of the motion of silicon atoms from the amorphous phase to the crystalline one through the formed metallic tin inclusions. The presence of the latter ensures the formation of silicon crystallites at a much lower temperature than the solid-phase recrystallization temperature (about 750 ∘C). A possibility for a relation to exist between the sizes of growing silicon nanocrystallites and metallic tin inclusions favoring the formation of nanocrystallites has been analyzed.


1995 ◽  
Vol 377 ◽  
Author(s):  
Tilo P. Drüsedau ◽  
Andreas N. Panckow ◽  
Bernd Schröder

ABSTRACTInvestigations on the gap state density were performed on a variety of samples of hydrogenated amorphous silicon germanium alloys (Ge fraction around 40 at%) containing different amounts of hydrogen. From subgap absorption measurements the values of the “integrated excess absorption” and the “defect absorption” were determined. Using a calibration constant, which is well established for the determination of the defect density from the integrated excess absorption of a-Si:H and a-Ge:H, it was found that the defect density is underestimated by nearly one order of magnitude. The underlying mechanisms for this discrepancy are discussed. The calibration constants for the present alloys are determined to 8.3×1016 eV−1 cnr2 and 1.7×1016 cm−2 for the excess and defect absorption, respectively. The defect density of the films was found to depend on the Urbach energy according to the law derived from Stutzmann's dangling bond - weak bond conversion model for a-Si:H. However, the model parameters - the density of states at the onset of the exponential tails N*=27×1020 eV−1 cm−3 and the position of the demarcation energy Edb-E*=0.1 eV are considerably smaller than in a-Si:H.


2006 ◽  
Vol 912 ◽  
Author(s):  
Justin J Hamilton ◽  
Erik JH Collart ◽  
Benjamin Colombeau ◽  
Massimo Bersani ◽  
Damiano Giubertoni ◽  
...  

AbstractFormation of highly activated, ultra-shallow and abrupt profiles is a key requirement for the next generations of CMOS devices, particularly for source-drain extensions. For p-type dopant implants (boron), a promising method of increasing junction abruptness is to use Ge preamorphizing implants prior to ultra-low energy B implantation and solid-phase epitaxy regrowth to re-crystallize the amorphous Si. However, for future technology nodes, new issues arise when bulk silicon is supplanted by silicon-on-insulator (SOI). Previous results have shown that the buried Si/SiO2 interface can improve dopant activation, but the effect depends on the detailed preamorphization conditions and further optimization is required. In this paper a range of B doses and Ge energies have been chosen in order to situate the end-of-range (EOR) defect band at various distances from the back interface of the active silicon film (the interface with the buried oxide), in order to explore and optimize further the effect of the interface on dopant behavior. Electrical and structural properties were measured by Hall Effect and SIMS techniques. The results show that the boron deactivates less in SOI material than in bulk silicon, and crucially, that the effect increases as the distance from the EOR defect band to the back interface is decreased. For the closest distances, an increase in junction steepness is also observed, even though the B is located close to the top surface, and thus far from the back interface. The position of the EOR defect band shows the strongest influence for lower B doses.


2002 ◽  
Vol 729 ◽  
Author(s):  
Roger T. Howe ◽  
Tsu-Jae King

AbstractThis paper describes recent research on LPCVD processes for the fabrication of high-quality micro-mechanical structures on foundry CMOS wafers. In order to avoid damaging CMOS electronics with either aluminum or copper metallization, the MEMS process temperatures should be limited to a maximum of 450°C. This constraint rules out the conventional polycrystalline silicon (poly-Si) as a candidate structural material for post-CMOS integrated MEMS. Polycrystalline silicon-germanium (poly-SiGe) alloys are attractive for modular integration of MEMS with electronics, because they can be deposited at much lower temperatures than poly-Si films, yet have excellent mechanical properties. In particular, in-situ doped p-type poly-SiGe films deposit rapidly at low temperatures and have adequate conductivity without post-deposition annealing. Poly-Ge can be etched very selectively to Si, SiGe, SiO2 and Si3N4 in a heated hydrogen peroxide solution, and can therefore be used as a sacrificial material to eliminate the need to protect the CMOS electronics during the MEMS-release etch. Low-resistance contact between a structural poly-SiGe layer and an underlying CMOS metal interconnect can be accomplished by deposition of the SiGe onto a typical barrier metal exposed in contact windows. We conclude with directions for further research to develop poly-SiGe technology for integrated inertial, optical, and RF MEMS applications.


2005 ◽  
Vol 483-485 ◽  
pp. 25-30 ◽  
Author(s):  
Peter J. Wellmann ◽  
Thomas L. Straubinger ◽  
Patrick Desperrier ◽  
Ralf Müller ◽  
Ulrike Künecke ◽  
...  

We review the development of a modified physical vapor transport (M-PVT) growth technique for the preparation of SiC single crystals which makes use of an additional gas pipe into the growth cell. While the gas phase composition is basically fixed in conventional physical vapor transport (PVT) growth by crucible design and temperature field, the gas inlet of the MPVT configuration allows the direct tuning of the gas phase composition for improved growth conditions. The phrase "additional" means that only small amounts of extra gases are supplied in order to fine-tune the gas phase composition. We discuss the experimental implementation of the extra gas pipe and present numerical simulations of temperature field and mass transport in the new growth configuration. The potential of the growth technique will be outlined by showing the improvements achieved for p-type doping of 4H-SiC with aluminum, i.e. [Al]=9⋅1019cm-3 and ρ<0.2Ωcm, and n-type doping of SiC with phosphorous, i.e. [P]=7.8⋅1017cm-3.


Sign in / Sign up

Export Citation Format

Share Document