Selective Area Heteroepitaxy of Nano-AlGaN UV Excitation Sources for Biofluorescence Application

2006 ◽  
Vol 916 ◽  
Author(s):  
Vibhu Jindal ◽  
James Grandusky ◽  
Fatemeh Shahedipour-Sandvik ◽  
Steven LeBoeuf ◽  
Joleyn Balch ◽  
...  

AbstractWe report on the selective area heteroepitaxy and facet evolution of AlGaN nanostructures on GaN/sapphire substrate using various mask materials. We also report on the challenges associated with selection of an appropriate mask material for selective area heteroepitaxy of AlGaN with varying Al composition. The shape and the growth rate of the nanostructures are observed to be greatly affected by the mask material. The evolution of the AlGaN nanostructures and Al incorporation were studied exhaustively as a function of growth parameters; including temperature, pressure, NH3 flow, total alkyl flow and TMAl/(TMAl+TMGa) ratio. The growth rate of nanostructures was reduced drastically when higher Al percentage AlGaN nanostructures were grown. The growth rates were increased for higher Al percentage AlGaN using a surfactant which resulted in a high quality pyramidal structure. As indicated by high resolution x-ray diffraction (XRD) and cathodoluminescence (CL) spectroscopy, composition of Al in the AlGaN nanostructure is significantly different from that of a thin film grown under the same growth conditions.

2007 ◽  
Vol 22 (4) ◽  
pp. 838-844 ◽  
Author(s):  
Vibhu Jindal ◽  
James R. Grandusky ◽  
Neeraj Tripathi ◽  
Fatemeh Shahedipour-Sandvik ◽  
Steven LeBoeuf ◽  
...  

We report on the selective area heteroepitaxy and facet evolution of AlGaN nanostructures on GaN/sapphire substrate using various mask materials. We also report on the challenges associated with selection of an appropriate mask material for selective area heteroepitaxy of AlGaN with varying Al composition. The shape and the growth rate of the nanostructures are observed to be greatly affected by the mask material. The evolution of the AlGaN nanostructures and Al incorporation were studied exhaustively as a function of growth parameters including temperature, pressure, NH3 flow, total alkyl flow, and TMAl/(TMAl+TMGa) ratio. The growth rate of nanostructures was reduced drastically when higher Al percentage AlGaN nanostructures were grown. The growth rates were increased for higher Al percentage AlGaN using a surfactant, which resulted in a high-quality pyramidal structure. As indicated by high-resolution x-ray diffraction and cathodoluminescence spectroscopy, the composition of Al in the AlGaN nanostructure is significantly different from that of a thin film grown under the same growth conditions.


2002 ◽  
Vol 743 ◽  
Author(s):  
A. Usikov ◽  
O. V. Kovalenkov ◽  
M. M. Mastro ◽  
D. V. Tsvetkov ◽  
A. I. Pechnikov ◽  
...  

ABSTRACTThe structural, optical, and electrical properties of HVPE-grown GaN-on-sapphire templates were studied. The c and a lattice constants of the GaN layers were measured by x-ray diffraction. It was observed that the c and a lattice constants vary non-monotonically with Si-doping. The proper selection of Si-doping level and growth conditions resulted in controllable strain relaxation, and thus, influenced defect formation in GaN-on-sapphire templates. It was also observed that HVPE homoepitaxial GaN layers grown on the templates have better crystal quality and surface morphology than the initial templates.


1996 ◽  
Vol 74 (S1) ◽  
pp. 85-88 ◽  
Author(s):  
R. Arès ◽  
C. A. Tran ◽  
S. P. Watkins

Reflectance difference spectroscopy (RDS) has been used to monitor the anisotropy of the surface of InAs and GaAs grown by atomic layer epitaxy (ALE). Saturation of the RDS signal is observed when the surface is fully covered with one monolayer of the impinging surface species. This property is used to optimize the growth interruptions for the ALE cycle. Good correlation of the RDS saturation is observed with growth-rate measurements obtained by X-ray diffraction (XRD). When exposure times are sufficiently long for saturation to be observed in the RDS signal, a growth rate of one monolayer per cycle (1 ML/cycle) is achieved. In principle all the different growth parameters such as exposure and purge times as well as gas flows can be determined in a few cycles performed on a single substrate. Without RDS the same results would require several growth runs and time consuming X-ray characterization.


2015 ◽  
Vol 1792 ◽  
Author(s):  
Stephen Babalola ◽  
Samuel Uba ◽  
Anwar Hossain ◽  
Giuseppe Camarda ◽  
Ralph James ◽  
...  

ABSTRACTCZT is a semiconductor material that promises to be a good candidate for uncooled gamma radiation detectors. However, to date, we are yet to overcome the technological difficulties in production of large size, defect-free CZT crystals. The most common problem is accumulation of Tellurium precipitates as microscopic inclusions. These inclusions influence the charge collection through charge trapping and electric field distortion. We employed high energy transmission X-ray diffraction techniques to study the quality of the CdZnTe crystals grown by Bridgman Technique. Crystallinity and defects within two different growth set-ups, i.e. with and without choked seeding, were compared by imaging the crystal orientation topography with white beam X-ray diffraction topography (WBXDT). The X-ray diffraction topography results show high correlation with large-area infrared transmission images of the crystals. Grain boundaries that are highly decorated with Te inclusions are observed. Characteristic Te inclusion arrangements as a result of growth conditions are discussed. We also measured the electronic properties of the detectors fabricated from ingots grown using two Bridgman processes, and observed a reduction in electrical resistivity of choked-seeding-grown CdZnTe crystals. Our results show that although choked seeding technique holds a promise in the realization of high quality mono-crystalline CdZnTe, current growth parameters must be improved to obtain defect-free crystals. These results are helpful to attain optimal seeding process for Bridgman-growth of large single crystals of CdZnTe.


2004 ◽  
Vol 831 ◽  
Author(s):  
I. Gherasoiu ◽  
S. Nikishin ◽  
G. Kipshidze ◽  
B. Borisov ◽  
A. Chandolu ◽  
...  

ABSTRACTAlN constitutes the buffer layer of choice for the growth of GaN on all common substrates and its crystalline quality and surface morphology determine many of the properties of the overgrown epitaxial structure. This work systematically investigates the MOMBE growth of high quality AlN on Si (111) using trimethylaluminum and ammonia as sources of aluminum and nitrogen, respectively. Metalorganic MBE represents a hybrid growth technique that offers a combination of growth precision, in-situ monitoring and ease of source management with the promise of high material quality. We demonstrate very efficient growth, with the growth rate in excess of 500 nm/h and low ammonia consumption of less than 1 sccm. Over the entire domain of growth parameters, the surface roughness remained in the range from 12 to 53 Å rms for AlN layers up to 1000 nm thick. Here, the low values of the roughness are associated to the low growth temperature (760 °C), behavior that contrasts with that usually observed in gas source MBE with elemental Al source. X-ray diffraction linewidth as narrow as 141 arcsec has been demonstrated for samples grown under stoichiometric conditions. High temperature of the ammonia injector promotes the transition to the two-dimensional growth, while reducing the growth rate, pointing out the importance of surface hydrogen. We demonstrate that hydrogen plays an important role in the MOMBE process acting as a surfactant and passivating surface nitrogen bonds.


Author(s):  
Steffi Deiter ◽  
Helvi Witek ◽  
Nikolay Oleynik ◽  
Jürgen Bläsing ◽  
Armin Dadgar ◽  
...  

AbstractHigh quality ZnO is an interesting material for electronic and optoelectronic applications. It belongs to the wide gap semiconductors (bandgap = 3.3 eV). In this paper we present ZnO layers grown by MOVPE (metalorganic vapor phase epitaxy). Several growth parameters like growth temperature and thickness of the layer were varied. For comprehensive investigations of the crystalline quality we employed different X-ray fine structure methods.


2011 ◽  
Vol 415-417 ◽  
pp. 1979-1982
Author(s):  
Zhi Ping Zheng ◽  
Jing Wang ◽  
Lin Quan ◽  
Shu Ping Gong ◽  
Dong Xiang Zhou

Electro Dynamic Gradient (EDG) method was utilized for TlBr crystal growth in this paper. The influence of crystal growth conditions such as temperature gradient and growth rate on optical and electrical properties of grown TlBr crystals was investigated. The quality of TlBr crystals was characterized by infrared (IR) transmittance spectrum, X-ray diffraction, and I-V measurements.


Author(s):  
Koji INAKA ◽  
Saori ICHIMIZU ◽  
Izumi YOSHIZAKI ◽  
Kiyohito KIHIRA ◽  
Elena G. LAVRENKO ◽  
...  

A series of space experiments aboard the International Space Station (ISS) associated with high-quality Protein Crystal Growth (PCG) in microgravity conditions can be considered as a unique and one of the best examples of fruitful collaboration between Japanese and Russian scientists and engineers in space, which includes also other ISS International Partners. X-ray diffraction is still the most powerful tool to determine the protein three dimensional structure necessary for Structure based drug design (SBDD). The major purpose of the experiment is to grow high quality protein crystals in microgravity for X-ray diffraction on Earth. Within one and a half decade, Japan and Russia have established an efficient process over PCG in space to support latest developments over drug design and structural biology. One of the keys for success of the experiment lies in how precisely pre-launch preparations are made. Japanese party provides flight equipment for crystallization and ensures the required environment to support the experiment aboard of the ISS’s Kibo module, and also mainly takes part of the experiment ground support such as protein sample characterization, purification, crystallization screening, and solution optimization for microgravity experiment. Russian party is responsible for integration of the flight items equipped with proteins and precipitants on board Russian transportation space vehicles (Soyuz or Progress), for delivery them at the ISS, transfer to Kibo module, and returning the experiments’ results back on Earth aboard Soyuz manned capsule. Due to close cooperation of the parties and solid organizational structure, samples can be launched at the ISS every half a year if the ground preparation goes smoothly. The samples are crystallized using counter diffusion method at 20 degree C for 1–2.5 months. After samples return, the crystals are carefully taken out from the capillary, and frozen for X-ray diffraction at SPring8 facility in Japan. Extensive support of researchers from both countries is also a part of this process. The paper analyses details of the PCG experiment scheme, unique and reliable technology of its execution, and contains examples of the application. Key words: International Space Station, Protein crystals, Microgravity, International collaboration.


Author(s):  
Anatoly A. Udovenko ◽  
Alexander A. Karabtsov ◽  
Natalia M. Laptash

A classical elpasolite-type structure is considered with respect to dynamically disordered ammonium fluoro-(oxofluoro-)metallates. Single-crystal X-ray diffraction data from high quality (NH4)3HfF7 and (NH4)3Ti(O2)F5 samples enabled the refinement of the ligand and cationic positions in the cubic Fm \bar 3 m (Z = 4) structure. Electron-density atomic profiles show that the ligand atoms are distributed in a mixed (split) position instead of 24e. One of the ammonium groups is disordered near 8c so that its central atom (N1) forms a tetrahedron with vertexes in 32f. However, a center of another group (N2) remains in the 4b site, whereas its H atoms (H2) occupy the 96k positions instead of 24e and, together with the H3 atom in the 32f position, they form eight spatial orientations of the ammonium group. It is a common feature of all ammonium fluoroelpasolites with orientational disorder of structural units of a dynamic nature.


1997 ◽  
Vol 482 ◽  
Author(s):  
Yu. V. Melnik ◽  
A. E. Nikolaev ◽  
S. I. Stepanov ◽  
A. S. Zubrilov ◽  
I. P. Nikitina ◽  
...  

AbstractGaN, AIN and AIGaN layers were grown by hydride vapor phase epitaxy. 6H-SiC wafers were used as substrates. Properties of AIN/GaN and AIGaN/GaN structures were investigated. AIGaN growth rate was about 1 μm/min. The thickness of the AIGaN layers ranged from 0.5 to 5 μm. The AIN concentration in AIGaN layers was varied from 9 to 67 mol. %. Samples were characterised by electron beam micro analysis, Auger electron spectroscopy, X-ray diffraction and cathodoluminescence.Electrical measurements performed on AIGaN/GaN/SiC samples indicated that undoped AIGaN layers are conducting at least up to 50 mol. % of AIN.


Sign in / Sign up

Export Citation Format

Share Document