Characterization of Alumina Optical Waveguides Grown by Ion Beam Assisted Deposition for SPARROW Biosensors

2006 ◽  
Vol 967 ◽  
Author(s):  
Praneetha Poloju ◽  
P. K. Samudrala ◽  
J. R. Nightingale ◽  
D. Korakakis ◽  
L. A. Hornak

ABSTRACTDielectric optical films with minimal surface roughness are required for biosensing applications since the coupling characteristics often used in signal transduction are dependent on the quality of the waveguides. This paper describes the fabrication and characterization of alumina-based optical waveguides for biosensor device for biomolecular detection. Alumina (Aluminum Oxide) Al2O3waveguides were chosen for their moisture stability and refractive index. Planar alumina optical waveguides were deposited on Borofloat substrates by a vacuum evaporation process using an ion assisted electron beam deposition technique. The deposited films showed RMS roughness of 0.3nm – 0.5nm and a range of refractive indices varying from 1.62 to 1.654 as a function of varying ion beam parameters such as oxygen flow rates and drive currents. The propagation losses for the TE0(Transverse Electric) mode of the alumina films at 632.8nm wavelength were found to vary between 2dB/cm – 6dB/cm at a wavelength of 632.8nm for TE0polarization as a function of ion beam parameters. It is shown that these factors influence the optical film quality and hold the potential for achieving further waveguide performance improvement for biosensing applications.

1997 ◽  
Vol 07 (03n04) ◽  
pp. 265-275
Author(s):  
R. Q. Zhang ◽  
S. Yamamoto ◽  
Z. N. Dai ◽  
K. Narumi ◽  
A. Miyashita ◽  
...  

Natural FeTiO 3 (illuminate) and synthesized FeTiO 3, single crystals were characterized by Rutherford backscattering spectroscopy combined with channeling technique and particle-induced x-ray emission (RBS-C and PIXE). The results obtained by the ion beam analysis were supplemented by the x-ray diffraction analysis to identify the crystallographic phase. Oriented single crystals of synthesized FeTiO 3 were grown under the pressure control of CO 2 and H 2 mixture gas using a single-crystal floating zone technique. The crystal quality of synthesized FeTiO 3 single crystals could be improved by the thermal treatment but the exact pressure control is needed to avoid the precipitation of Fe 2 O 3 even during the annealing procedure. Natural FeTiO 3 contains several kinds of impurities such as Mn , Mg , Na and Si . The synthesized samples contain Al , Si and Na which are around 100 ppm level as impurities. The PBS-C results of the natural sample imply that Mn impurities occupy the Fe sublattice in FeTiO 3 or in mixed phase between ilmenite and hematite.


Author(s):  
S. Intarasiri ◽  
A. Hallén ◽  
T. Kamwanna ◽  
L.D. Yu ◽  
G. Possnert ◽  
...  

2001 ◽  
Vol 689 ◽  
Author(s):  
Karola Thiele ◽  
Sibylle Sievers ◽  
Juergen Dzick ◽  
Lars-Oliver Kautschor ◽  
Christian Jooss ◽  
...  

ABSTRACTBiaxially aligned Indium Tin Oxide (ITO) thin films to be used as electrically conductive buffer layers were prepared by an Ion-Beam Assisted Deposition (IBAD) process on various substrates. Two Kaufman ion sources with 2.5 cm diameter were employed for the assisting and the sputtering beam, respectively. All deposited films revealed (001) oriented film growth with a strong in-plane alignment. The degree of the in-plane orientation was studied depending on the ion-beam parameters and the incident angle. Investigations (TEM and X-ray) of the texture evolution of these IBAD films during film growth were carried out. An in-plane texture of 12.6°FWHM for a 1 μm thick film has been achieved so far. The quality of the buffer has been demonstrated by the subsequent deposition of high-current carrying YBCO-films deposited by thermal coevaporation using a 3–5 nm thick Y2O3 interlayer. A jc of 0.76 MA/cm2 (77K, 0T) has been obtained for a 1 cm × 1 cm sample with ITO of 20° FWHM.


2004 ◽  
Vol 19 (4) ◽  
pp. 1175-1180 ◽  
Author(s):  
I. Usov ◽  
P. Arendt ◽  
L. Stan ◽  
DePaula R. ◽  
H. Wang ◽  
...  

The diffusion behavior of elements constituting Hastelloy C-276 (C, Si, Mn, Co, W, Fe, Cr, Mo, and Ni) in alumina films was investigated using secondary ion mass spectroscopy. The films were deposited by ion-beam-assisted deposition and annealed in vacuum over a temperature range of 500–1000 °C. Characterization of film microstructure was performed using transmission electron microscopy and selected area diffraction analyses. The films were predominantly amorphous with alumina nanocrystallites nonuniformly dispersed throughout the volume both before and after annealing. A relatively wide interface region between the Hastelloy substrate and alumina film was formed in the as-deposited sample due to ion beam mixing. No diffusion of any of the substrate elements was observed after annealing, except for Mn, Cr, and Ni. The impurity depth distributions consisted of two components, which differed by several orders of magnitude with respect to diffusion coefficient and solubility. Activation energies and temperature dependencies of the diffusion coefficients were determined, and a diffusion mechanism was discussed.


2003 ◽  
Author(s):  
Marco Cremona ◽  
Stefano Pelli ◽  
Joao A. M. Pereira ◽  
Giancarlo C. Righini

2003 ◽  
Author(s):  
Stefano Pelli ◽  
Massimo Brenci ◽  
Roberto Calzolai ◽  
Franco Quercioli ◽  
Bruno Tiribilli ◽  
...  

1998 ◽  
Vol 16 (4) ◽  
pp. 569-580 ◽  
Author(s):  
V. Bystritskii ◽  
A. Kharlov ◽  
E. Lavernia ◽  
X. Peng ◽  
Y. Yankelevich ◽  
...  

The paper presents experimental results on the application of microsecond plasma opening switch (MPOS) technology for materials surface modification. The ion beam parameters generated by the MPOS are up to 250 keV energy and current density and energy densities of up to 150 A/cm2 and 2.2 J/cm2, respectively. Characterization of the treated samples showed structural changes to a depth of several microns. The small ion range (few microns) and fast cooling of the upper melted layer (up to 1010 K/s) result in formation of fine-grain structures characterized by improved corrosion and erosion properties. Measurements indicate an increase in microhardness of a factor of about 3 for carbon steel samples. Corrosion resistance increase for the treated samples of at least 3, as measured by mass loss and potentiodynamic methods, has been measured for Al alloys. Microstructural changes in the surface morphology indicate a reduction in grain size for the treated samples and the appearance of shallow craters. Results of numeric simulations are given for the temperature distribution in materials due to ion beam heating.


2020 ◽  
Vol 15 ◽  
pp. 269
Author(s):  
F. Noli ◽  
P. Misaelides ◽  
M. Kokkoris ◽  
J. P. Riviere

Three series of protective coatings (thickness ca. 200-300 nm) were prepared on the surface of Ti-Al-V alloy (TA6V): silicon carbide (SiC) films produced by ion sputtering (I), silicon carbide films and subjected to Dynamic Ion Mixing (DIM) during the deposition procedure (II) and Diamond Like Carbon (DLC) films produced by ion beam deposition (III). The chemical composition (Si, C and O) of the films was determined using ion beam analysis techniques. The silicon, carbon and oxygen depth distribution was determined by proton Rutherford backscattering spectrometry (p-RBS) and using the resonances at 4.265 and 3.035 MeV of the 12C(α,α)12C and 16O(α,α)16O interactions respectively. The ratio of Si:C was found to be close to the stoichiometric one. The corrosion resistance of the coated samples was tested under strong aggressive conditions (5M HCl at 50 oC). The investigation following the corrosion attack showed that the thickness of the films remained practically unchanged. Only slight diffusion and dissolution effects were observed indicating the good quality of the produced thin films.


Author(s):  
W. E. Lee

An optical waveguide consists of a several-micron wide channel with a slightly different index of refraction than the host substrate; light can be trapped in the channel by total internal reflection.Optical waveguides can be formed from single-crystal LiNbO3 using the proton exhange technique. In this technique, polished specimens are masked with polycrystal1ine chromium in such a way as to leave 3-13 μm wide channels. These are held in benzoic acid at 249°C for 5 minutes allowing protons to exchange for lithium ions within the channels causing an increase in the refractive index of the channel and creating the waveguide. Unfortunately, optical measurements often reveal a loss in waveguiding ability up to several weeks after exchange.


Author(s):  
L. Wan ◽  
R. F. Egerton

INTRODUCTION Recently, a new compound carbon nitride (CNx) has captured the attention of materials scientists, resulting from the prediction of a metastable crystal structure β-C3N4. Calculations showed that the mechanical properties of β-C3N4 are close to those of diamond. Various methods, including high pressure synthesis, ion beam deposition, chemical vapor deposition, plasma enhanced evaporation, and reactive sputtering, have been used in an attempt to make this compound. In this paper, we present the results of electron energy loss spectroscopy (EELS) analysis of composition and bonding structure of CNX films deposited by two different methods.SPECIMEN PREPARATION Specimens were prepared by arc-discharge evaporation and reactive sputtering. The apparatus for evaporation is similar to the traditional setup of vacuum arc-discharge evaporation, but working in a 0.05 torr ambient of nitrogen or ammonia. A bias was applied between the carbon source and the substrate in order to generate more ions and electrons and change their energy. During deposition, this bias causes a secondary discharge between the source and the substrate.


Sign in / Sign up

Export Citation Format

Share Document