Investigation of Ultralow Loss Interconnection Technique for LTCC based System-in-Package(SIP) Technology at 60GHz

2006 ◽  
Vol 969 ◽  
Author(s):  
Dong-Young Kim ◽  
Jae Kyoung Mun ◽  
Dong-Suk Jun ◽  
Haechoen Kim

AbstractThe effects of wire and ribbon bond interconnection on the transmission characteristics at millimeter wave frequency range was presented. The insertion loss and return loss was closely related with the ratio of the signal line width to that of bonded wire or ribbon. The most promise condition for low loss interconnection was that the width of bonded wire or ribbon should be compatible to the width of signal lines. In the actual fabrication of LTCC amp module, the insertion loss of packaging is very small which means that the loss due to bonding is nearly negligible. However, the S11 and S22 degraded severely due to the difference of the types of transmission lines between chip and packaging module. A new transition structure was introduced in order to compensate this difference of transmission lines.

2013 ◽  
Vol 760-762 ◽  
pp. 174-177
Author(s):  
Yi Hong Zhou ◽  
Hai Yang Wang ◽  
Jia Yin Li

Based on a linearly tapered antipodal finline, a novel low-loss wideband transition between waveguide and substrate integrated waveguide (SIW) is discussed. Results show that a low insertion loss (1.2-2.1dB) and a return loss better than 15dB across the entire Ka-band are obtained for a back-to-back transition structure.


2019 ◽  
Vol 12 (2) ◽  
pp. 116-119
Author(s):  
F. Parment ◽  
A. Ghiotto ◽  
T.-P. Vuong ◽  
L. Carpentier ◽  
K. Wu

AbstractA compact transition between conductor-backed coplanar waveguide (CBCPW) and substrate integrated suspended line (SISL) is presented. Compared to the reported transitions from CBCPW to SISL, performance and compactness are improved. For demonstration purpose, a multilayer transition is designed and fabricated for operation up to 46 GHz. Experimental results, based on an electronic calibration and thru–reflect–line calibration allowing measurement in the 0.01–50 GHz frequency range, demonstrate an insertion loss of 0.59 ± 0.51 dB with a return loss of better than 10 dB in the 10 MHz to 46 GHz frequency range.


2017 ◽  
Vol 9 (10) ◽  
pp. 1931-1936 ◽  
Author(s):  
Kaijun Song ◽  
Yifang Zhou ◽  
Maoyu Fan ◽  
Yu Zhu ◽  
Yong Fan

A wide-stopband bandpass-filtering power divider with high-frequency selectivity has been proposed in this paper. The input and output feeding lines and eight 1/4 wavelength resonators are used to realize the signal transmission. In order to obtain good frequency selectivity, source-load coupling transmission path is used to generate transmission zeros near the passband. A four-way power divider with bandpass-filtering response and high-frequency selectivity is designed, fabricated, and measured. The measured results agree with the simulated ones closely in the desirable frequency range. The measured center frequency of the power divider is 2.38 GHz with input return loss of 31.2 dB, while the measured insertion loss is about 1 dB (not including ideal 6 dB four-way power dividing insertion loss). Moreover, the measured 3-dB bandwidth is 12% and the measured stopband attenuation is >15 dB from 2.59 to 7.7 GHz. In addition, two transmission zeros of 1.9 and 2.8 GHz are located near the passband. The measured output isolations are all >15.7 dB.


Frequenz ◽  
2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Arshad Mehmood ◽  
Yuliang Zheng ◽  
Hubertus Braun ◽  
Martun Hovhannisyan ◽  
Martin Letz ◽  
...  

AbstractThis paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A −10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.


Author(s):  
Andrey V. Mozharovskiy ◽  
Oleg V. Soykin ◽  
Aleksey A. Artemenko ◽  
Roman O. Maslennikov ◽  
Irina B. Vendik

Introduction. Increased data rate in modern communication systems can be achieved by raising the operational frequency to millimeter wave range where wide transmission bands are available. In millimeter wave communication systems, the passive components of the antenna feeding system, which are based on hollow metal waveguides, and active elements of the radiofrequency circuit, which have an interface constructed on planar printed circuit boards (PCB) are interconnected using waveguide-to-microstrip transition.Aim. To design and investigate a high-performance wideband and low loss waveguide-to-microstrip transition dedicated to the 60 GHz frequency range applications that can provide effective transmission of signals between the active components of the radiofrequency circuit and the passive components of the antenna feeding systemMaterials and methods. Full-wave electromagnetic simulations in the CST Microwave Studio software were used to estimate the impact of the substrate material and metal foil on the characteristics of printed structures and to calculate the waveguide-to-microstrip transition characteristics. The results were confirmed via experimental investigation of fabricated wideband transition samples using a vector network analyzer Results. The probe-type transition consist of a PCB fixed between a standard WR-15 waveguide and a back-short with a simple structure and the same cross-section. The proposed transition also includes two through-holes on the PCB in the center of the transition area on either side of the probe. A significant part of the lossy PCB dielectric is removed from that area, thus providing wideband and low-loss performance of the transition without any additional matching elements. The design of the transition was adapted for implementation on the PCBs made of two popular dielectric materials RO4350B and RT/Duroid 5880. The results of full-wave simulation and experimental investigation of the designed waveguide to microstrip transition are presented. The transmission bandwidth for reflection coefficient S11 < –10 dB is in excess of 50…70 GHz. The measured insertion loss for a single transition is 0.4 and 0.7 dB relatively for transitions based on RO4350B and RT/Duroid 5880.Conclusion. The proposed method of insertion loss reduction in the waveguide-to-microstrip transition provides effective operation due to reduction of the dielectric substrate portion in the transition region for various high-frequency PCB materials. The designed waveguide-to -microstrip transition can be considered as an effective solution for interconnection between the waveguide and microstrip elements of the various millimeter-wave devices dedicated for the 60 GHz frequency range applications.


2021 ◽  
Vol 71 (03) ◽  
pp. 324-328
Author(s):  
Akhil Jha ◽  
P. Ajesh ◽  
Rohit Anand ◽  
Paresh Kumar Vasava ◽  
Rajesh Trivedi ◽  
...  

Vacuum windows are an essential part of any radio frequency (RF) system which launches/couples RF power from an atmospheric to a vacuum environment. This paper describes the RF design of a double barrier ceramic coaxial vacuum window. Alumina 99.5% pure is considered as ceramic barrier material while inner and outer conductors are oxygen-free copper. As the initial design approach the thickness, slope, depth of ceramic in the conductor is varied and the performance of the window is studied. The design is optimised to achieve the best insertion loss, return loss response for operating frequency range up to 65MHz.


2020 ◽  
Vol 12 (8) ◽  
pp. 749-753
Author(s):  
Song Guo ◽  
Kaijun Song ◽  
Yong Fan

AbstractA four-way suspended-stripline power divider is presented in this letter. The power dividing network is designed by using the suspended stripline, while the isolation network is designed by using the microstrip line. The vias are used to connect the power dividing network and the isolation network. The even- and odd-mode analysis method is applied to design the presented power divider. The simulated and measured results of the presented power divider show reasonable agreement with each other. The measured input return loss in the band is greater than 28 dB (7.92 to 9.53 GHz), while the measured insertion loss is less than 0.37 dB. The measured output return loss is greater than 20 dB from 7.82 to 9.86 GHz. Besides, the measured output isolation is greater than 20 dB.


2018 ◽  
Vol 32 (30) ◽  
pp. 1850362
Author(s):  
Lei Han ◽  
Shen Xiao

In this paper, design, fabrication and measurements of a novel single-pole-double-throw three-state RF MEMS switch based on silicon substrate are presented. The RF MEMS switch consists of two UV-shaped beam push–pull thermal actuators which have three states of ON, OFF and Deep-OFF by using current actuation. When the switch is at Deep-OFF state, it can provide a higher isolation. The switch is fabricated by MetalMUMPs process. The measurement results show that, to the proposed single-pole-double-throw RF MEMS switch, when Switch I is at the ON state and Switch II is at the OFF state, the return loss is better than −16 dB, the insertion loss of Port1 and Port2 is less than −0.9 dB and the isolation of Port3 and Port1 is better than −22 dB at the frequency range from 8 GHz to 12 GHz. When Switch I is at the ON state and the actuator of Switch II is pulled back, which is called the Deep-OFF state, the return loss of Port1 is better than −15.5 dB, the insertion loss of Port1 and Port2 is better than −0.8 dB, and the isolation of Port3 and Port1 is better than −23.5 dB can be achieved at the frequency range from 8 GHz to 12 GHz.


2016 ◽  
Vol 9 (3) ◽  
pp. 499-504 ◽  
Author(s):  
Mohsen Hayati ◽  
Mehrnaz Khodadoost ◽  
Hamed Abbasi

In this paper, a microstrip lowpass filter with wide stopband and sharp roll-off is presented. The proposed filter consists of a modified radial stub resonator which is cascaded by four suppressing cells. To reduce the overall size, the transmission lines are folded. The cut-off frequency of the proposed filter is 1.19 GHz. The transition band is approximately 0.2 GHz from 1.19 to 1.39 GHz with corresponding attenuation levels of 3–20 dB. The stopband is from 1.39 to 19 GHz with attenuation level of <20 dB. The insertion loss and return loss in the passband from DC to 0.8 GHz are better than 0.26 and 14 dB, respectively. The proposed filter is fabricated and measured. The simulated and measured results are in good agreement.


2020 ◽  
Vol 20 (1) ◽  
pp. 1
Author(s):  
M. Reza Hidayat ◽  
Mohamad Hamzah Zamzam ◽  
Salita Ulitia Prini

A waveguide is a transmission medium in the form of a pipe and is made from a single conductor. A waveguide has the function of delivering electromagnetic waves with a frequency of 300 MHz - 300 GHz and is able to direct the waves in a particular direction. In its development, a waveguide can be used as a filter. A filter consists of several circuits designed to pass signals that are generated at a specific frequency and attenuate undesired signals. One type of filter that can pass a signal in a particular frequency range and block signals that are not included in that frequency range is a bandpass filter. In this article, we study a rationing analysis on rectangular waveguide using TEmn mode followed by an implementation of a bandpass filter in the frequency range of 3.3-3.5 GHz for S-Band Wireless Broadband and Fixed Satellite. The observation process is done by shifting the position of the connector (power supply) as much as five times the shift to get the results as desired. Based on the analysis of the simulation process using Ansoft HFSS software, it is observed that the optimized results of the rectangular waveguide mode TE10 were obtained at a distance between connectors of 30 mm with a cut-off frequency of 3.3 GHz, the value of the return loss parameter of -34.442 dB and an insertion loss of -0.039 dB. Whereas, the optimized TE20 mode can be obtained at a distance of 70 mm between connectors, with a cut-off frequency of 3.5 GHz, the value of the return loss parameter of -28.718 dB and an insertion loss of -0.045. The measurement of TE10 mode in our Vector Network Analyzer (VNA) shows a cut-off frequency of 3.2 GHz, with a value of the return loss of -18.73 dB and an insertion loss of -2.70 dB. Meanwhile, a measurement of TE20 mode results in a cut-off frequency of 3.2 GHz, with a value of the return loss of -5.89 dB and an insertion loss of -4.31 dB.


Sign in / Sign up

Export Citation Format

Share Document