scholarly journals High-Performance Temporary Adhesives for Wafer Bonding Applications

2006 ◽  
Vol 970 ◽  
Author(s):  
Rama Puligadda ◽  
Sunil Pillalamarri ◽  
Wenbin Hong ◽  
Chad Brubaker ◽  
Markus Wimplinger ◽  
...  

ABSTRACTMyriad structures for stacking chips, power devices, smart cards, and thin substrates for processors have one thing in common: thin silicon. Wafer thinning will soon be an essential process step for most of the devices fabricated and packaged henceforth. The key driving forces for thinned wafers are improved heat dissipation, three-dimensional stacking, reduced electrical resistance, and substrate flexibility. Handling of thin and ultrathin substrates however is not trivial because of their fragility and tendency to warp and fold. The thinned substrates need to be supported during the backside grinding process and through the subsequent processes such as lithography, deposition, etc. Using temporary adhesives to attach the processed device wafer to a rigid carrier wafer offers an efficient solution. The key requirements for such materials are ease of application, coating uniformity with minimal thickness variation across the wafer, good adhesion to a wide variety of surfaces, thermal stability in processes such as dielectric deposition and metallization, and ease of removal to allow high throughput. An additional requirement for these materials is stability in harsh chemical environments posed by processes such as etching and electroplating. Currently available materials meet only a subset of these requirements. None of them meet the requirement of high-temperature stability combined with ease of removal. We have developed adhesives that meet a wide range of post-thinning operating temperatures. Additionally, the materials are soluble in industry-accepted safe solvents and can be spin-applied to required thicknesses and uniformity. Above all, the coatings can be removed easily without leaving any residue. This paper reports on the development of a wide range of temporary adhesives that can be used in wafer thinning applications while applying both novel and conventional bonding and debonding methods.

2007 ◽  
Vol 4 (3) ◽  
pp. 105-111 ◽  
Author(s):  
S. Pillalamarri ◽  
R. Puligadda ◽  
C. Brubaker ◽  
M. Wimplinger ◽  
S. Pargfrieder

Wafer thinning has been effectively used to improve heat dissipation in power devices and to fabricate flexible substrates, small chip packages, and multiple chips in a package. Wafer handling has become an important issue due to the tendency of thinned wafers to warp and fold. Thinned wafers need to be supported during the backgrinding process, lithography, deposition, etc. Temporary wafer bonding using removable adhesives provides a feasible route to wafer thinning. Existing adhesives meet only a partial list of performance requirements. They do not meet the requirements of high-temperature stability combined with ease of removal. This paper reports on the development of a wide range of temporary adhesives to be used in wafer thinning applications that use both novel and conventional bonding and debonding methods. We have developed a series of novel removable high-temperature spin-on adhesives with excellent bonding properties and a wide range of operating temperatures for bonding and/or debonding to achieve a better processing window.


2005 ◽  
Vol 867 ◽  
Author(s):  
J. J. McMahon ◽  
F. Niklaus ◽  
R. J. Kumar ◽  
J. Yu ◽  
J.Q. Lu ◽  
...  

AbstractWafer-level three dimensional (3D) IC technology offers the promise of decreasing RC delays by reducing long interconnect lines in high performance ICs. This paper focuses on a viafirst 3D IC platform, which utilizes a back-end-of-line (BEOL) compatible damascene-patterned layer of copper and Benzocyclobutene (BCB). This damascene-patterned copper/BCB serves as a redistribution layer between two fully fabricated wafer sets of ICs and offers the potential of high bonding strength and low contact resistance for inter-wafer interconnects between the wafer pair. The process would thus combine the electrical advantages of 3D technology using Cu-to-Cu bonding with the mechanical advantages of 3D technology using BCB-to-BCB bonding.In this work, partially cured BCB has been evaluated for copper damascene patterning using commercially available CMP slurries as a key process step for a via-first 3D process flow. BCB is spin-cast on 200 mm wafers and cured at temperatures ranging from 190°C to 250°C, providing a wide range of crosslink percentage. These films are evaluated for CMP removal rate, surface damage (surface scratching and embedded abrasives), and planarity with commercially available copper CMP slurries. Under baseline process parameters, erosion, and roughness changes are presented for single-level damascene test patterns. After wafers are bonded under controlled temperature and pressure, the bonding interface is inspected optically using glass-to-silicon bonded wafers, and the bond strength is evaluated by a razor blade test.


Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 192
Author(s):  
Alexander Paul Fellows ◽  
Debashis Puhan ◽  
Janet S. S. Wong ◽  
Michael T. L. Casford ◽  
Paul B. Davies

The blend of polyetheretherketone (PEEK) and polybenzimidazole (PBI) produces a high-performance blend (PPB) that is a potential replacement material in several industries due to its high temperature stability and desirable tribological properties. Understanding the nanoscale structure and interface of the two domains of the blend is critical for elucidating the origin of these desirable properties. Whilst achieving the physical characterisation of the domain structures is relatively uncomplicated, the elucidation of structures at the interface presents a significant experimental challenge. In this work, we combine atomic force microscopy (AFM) with an IR laser (AFM-IR) and thermal cantilever probes (nanoTA) to gain insights into the chemical heterogeneity and extent of mixing within the blend structure for the first time. The AFM-IR and nanoTA measurements show that domains in the blend are compositionally different from those of the pure PEEK and PBI polymers, with significant variations observed in a transition region several microns wide in proximity to domain boundary. This strongly points to physical mixing of the two components on a molecular scale at the interface. The versatility intrinsic to the combined methodology employed in this work provides nano- and microscale chemical information that can be used to understand the link between properties of different length scales across a wide range of materials.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Erfan Rezvani Ghomi ◽  
Saeideh Kholghi Eshkalak ◽  
Sunpreet Singh ◽  
Amutha Chinnappan ◽  
Seeram Ramakrishna ◽  
...  

Purpose The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues. Design/methodology/approach Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK. Findings The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics. Originality/value The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
N. Gupta ◽  
G. F. Alapatt ◽  
R. Podila ◽  
R. Singh ◽  
K. F. Poole

We present a comprehensive review on prospects for one-, two-, or three-dimensional nanostructure-based solar cells for manufacturing the future generation of photovoltaic (PV) modules. Reducing heat dissipation and utilizing the unabsorbed part of the solar spectrum are the key driving forces for the development of nanostructure-based solar cells. Unrealistic assumptions involved in theoretical work and the tendency of stretching observed experimental results are the primary reasons why quantum phenomena-based nanostructures solar cells are unlikely to play a significant role in the manufacturing of future generations of PV modules. Similar to the invention of phase shift masks (to beat the conventional diffraction limit of optical lithography) clever design concepts need to be invented to take advantage of quantum-based nanostructures. Silicon-based PV manufacturing will continue to provide sustained growth of the PV industry.


2021 ◽  
Author(s):  
Daniel Pflieger ◽  
Miguel de la Varga Hormazabal ◽  
Simon Virgo ◽  
Jan von Harten ◽  
Florian Wellmann

<p>Three dimensional modeling is a rapidly developing field in geological scientific and commercial applications. The combination of modeling and uncertainty analysis aides in understanding and quantitatively assessing complex subsurface structures. In recent years, many methods have been developed to facilitate this combined analysis, usually either through an extension of existing desktop applications or by making use of Jupyter notebooks as frontends. We evaluate here if modern web browser technology, linked to high-performance cloud services, can also be used for these types of analyses.</p><p>For this purpose, we developed a web application as proof-of-concept with the aim to visualize three dimensional geological models provided by a server. The implementation enables the modification of input parameters with assigned probability distributions. This step enables the generation of randomized realizations of models and the quantification and visualization of propagated uncertainties. The software is implemented using HTML Web Components on the client side and a Python server, providing a RESTful API to the open source geological modeling tool “GemPy”. Encapsulating the main components in custom elements, in combination with a minimalistic state management approach and a template parser, allows for high modularity. This enables rapid extendibility of the functionality of the components depending on the user’s needs and an easy integration into existing web platforms.</p><p>Our implementation shows that it is possible to extend and simplify modeling processes by creating an expandable web-based platform for probabilistic modeling, with the aim to increase the usability and to facilitate access to this functionality for a wide range of scientific analyses. The ability to compute models rapidly and with any given device in a web browser makes it flexible to use, and more accessible to a broader range of users.</p>


Author(s):  
F. Ladru ◽  
E. Lugscheider ◽  
H. Jungklaus ◽  
C. Herbst ◽  
I. Kvernes

Abstract For very large structures and parts in critical environments, a materials solution often cannot be found by using one material. The specific desired properties for those structures, like stiffness, ductility, high temperature stability, corrosion resistance, etc. are difficult to fulfill with only one material. In this case a solution may be found by using coatings and design their specific properties to replenish each other by their combination. The Thermal Spraying processes offer the necessary flexibility of producing thin to thick, ductile, soft to hard coatings while due to the wide range of process temperatures it is possible to process a wide range of materials, both as coating and structure. In this paper the some recent and important developments in Thermal Spraying to produce coatings for technical demanding structures will be described. These developments consist of High Power Plasma Spraying, powder- and process control development. To ensure process consistency during long spraying times and to apply reproducible coating quality a suitable process control is of great importance and the development of temperature control by Pyrometry and Thermography will be presented. The example will be drawn according to the application of a coating on a ball valve for off-shore and ship diesel engine parts (piston and valve).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sun Min ◽  
Yufeng Bi ◽  
Mulian Zheng ◽  
Sai Chen ◽  
Jingjing Li

The energy consumption and greenhouse gas emission of asphalt pavement have become a very serious global problem. The high-temperature stability and durability of polyurethane (PU) are very good. It is studied as an alternative binder for asphalt recently. However, the strength-forming mechanism and the mixture structure of the PU mixture are different from the asphalt mixture. This work explored the design and performance evaluation of the PU mixture. The PU content of mixtures was determined by the creep slope (K), tensile strength ratios (TSR), immersion Cantabro loss (ICL), and the volume of air voids (VV) to ensure better water stability. The high- and low-temperature stability, water stability, dynamic mechanical property, and sustainability of the PU mixture were evaluated and compared with those of the stone matrix asphalt mixture (SMA). The test results showed that the dynamic stability and bending strain of the PU mixture were about 7.5 and 2.3 times of SMA. The adhesion level of PU and the basalt aggregate was one level greater than the limestone, and basalt aggregates were proposed to use in the PU mixture to improve water stability. Although the initial TSR and ICL of PU mixture were lower, the long-term values were higher; the PUM had better long-term water damage resistance. The dynamic modulus and phase angles (φ) of the PU mixture were much higher. The energy consumption and CO2 emission of the PU mixture were lower than those of SMA. Therefore, the cold-mixed PU mixture is a sustainable material with excellent performance and can be used as a substitute for asphalt mixture.


Author(s):  
Nicholas E. McGuire ◽  
Neal P. Sullivan ◽  
Robert J. Kee ◽  
Huayang Zhu ◽  
James A. Nabity ◽  
...  

Hexaaluminate catalysts offer excellent high-temperature stability compared to the equivalent metal-based catalysts. Their stability also lends well to use as a catalyst support. However, use of novel hexaaluminates is limited in fuel processing for fuel-cell applications. In this paper, we report on the performance of hexaaluminates as a catalyst support in the steam reforming of methane. The hexaaluminates are synthesized by a metal-exchange process using alumoxane precursors that enable a wide range of metal substitutions. Performance is evaluated using a unique stagnation-flow reactor that enables detailed probing of the boundary layer above the catalyst-impregnated stagnation surface. Experimental results are compared with models to understand fundamental reaction kinetics and optimize catalyst performance. RhSr-substituted hexaaluminates with a Rh impregnation are shown to yield the best performance. Scanning- and Transmission-Electron Microscopy are used to characterize the different types of hexaaluminates, and to examine the effect of aging on catalyst structure.


Sign in / Sign up

Export Citation Format

Share Document