Thin Film InN/Anatase Bilayers as a Substitute Dye/Semiconductor Interface for Solar Cells

2008 ◽  
Vol 1102 ◽  
Author(s):  
Daniel Hoy ◽  
Martin Kordesch

AbstractThe electronic properties of an InN/anatse bilayer, proposed as a replacement for the dye/semi-conductor interface in Dye Sensitized Solar Cell[1, 2], are measured. RF sputtered thin films of anatase and InN are used as the “dye” replacement. . Two types of InN film are prepared: polycrystalline samples deposited at high temperature, with an optical band gap of < 1 eV, and as-deposited (at least partially amorphous) samples with an optical band gap >1 eV. Energy Dispersive X-ray fluorescence, X-ray Diffraction, and Raman spectroscopy are used to characterize the samples. The resistance in the dark and under illumination are measured. The samples deposited at high temperature are crystalline and have a sheet resistivity ≈ 4 Ω/⁐, and display no photoconductivity. The partially amorphous samples have sheet resistivity of ≈ 500Ω/⁐. Since both types of InN films, including high quality (based on band gap) polycrystalline InN, do not show increased conductivity with light, we conclude that a solar cell based on an InN/anatase bilayer is not feasible.

2021 ◽  
Author(s):  
T. Shiyani ◽  
Indrani Banerjee ◽  
Santosh K. Mahapatra ◽  
Asim K Ray

Abstract Photoelectrochemical properties have been investigated for flexible ZnO/ITO/PET photoelectrodes. ZnO was spin coated on ITO/PET substrate with thickness of about 310 nm. The high crystalline structure of ZnO was studied using x-ray diffraction pattern. A value of 3.4 eV has been estimated for optical band gap from its absorption spectra. The flexible ZnO photoelectrode was demonstrated to generate photoelectrochemical current. Values of 1.022 and 0.714 were found to be for photo switching and photoresponsivity, respectively. ZnO/ITO/PET can be used as a substrate for making flexible hybrid PEC devices to generate solar power and solar fuels.


2010 ◽  
Vol 25 (12) ◽  
pp. 2426-2429 ◽  
Author(s):  
Guangjun Wang ◽  
Gang Cheng ◽  
Binbin Hu ◽  
Xiaoli Wang ◽  
Shaoming Wan ◽  
...  

In this paper, polycrystalline CuIn(SxSe1–x)2 thin films with tunable x and Eg (band gap) values were prepared by controlling the sulfurization temperature (T) of CuInSe2 thin films. X-ray diffraction indicated the CuIn(SxSe1–x)2 films exhibited a homogeneous chalcopyrite structure. When T increases from 150 to 500 °C, x increases from 0 to 1, and Eg increases from 0.96 to 1.43 eV. The relations between x and Eg and the sulfurization process of CuIn(SxSe1–x)2 thin films have been discussed. This work provides an easy and low-cost technique for preparing large area absorber layers of solar cell with tunable Eg.


2012 ◽  
Vol 534 ◽  
pp. 156-159 ◽  
Author(s):  
Dong Hua Fan ◽  
Rong Zhang ◽  
Hui Ren Peng

Cu2ZnSnS4 (CZTS) thin films are prepared by sulfurizing the precursors deposited by vacuum evaporation methods. The samples sulfurized at 500°C for 3h shows the strong (112) diffraction peak at 28.45˚, suggesting the successful synthesis of CZTS thin films. The X-ray diffraction shows that CZTS thin film prepared in Sn-poor condition have the best crystallinity. The Sn-dependent crystallite size was calculated to be 19.53-21.03 nm. In addition, we found that the optical band gap with various Sn contents can be modulated at 1.48-1.85 eV


2013 ◽  
Vol 200 ◽  
pp. 50-53
Author(s):  
Inna A. Ivashchenko ◽  
Volodumur V. Halyan ◽  
Irina V. Danylyuk ◽  
Volodumur Z. Pankevuch ◽  
Georgij Y. Davydyuk ◽  
...  

The phase diagram of the Ga2Se3–In2Se3 system was investigated by differential-thermal analysis (DTA) and X-ray diffraction (XRD) method. The single crystals from the area of existence of the γ2 phase with the compositions (Ga0.6In0.4)2Se3 and (Ga0.594In0.396Er0.01)2Se3 were grown by a vertical Bridgman method. Absorption spectra of the grown crystals were studied. The estimated optical band gap is 1.95±0. 01 eV. The resistance of the single crystals of (Ga0.6In0.4)2Se3 (R=500 MΩ) and (Ga0.594In0.396Er0.01)2Se3 (R=210 MΩ) was measured.


2019 ◽  
Vol 24 (2) ◽  
pp. 44-48
Author(s):  
Leela Pradhan Joshi ◽  
Jeny Bhatta ◽  
Tika Bahadur Katuwal ◽  
Bhim Prasad Kafle ◽  
Deependra Das Mulmi

 X-ray diffraction, Raman investigations, band gap energy of zinc oxide nanoparticles (ZnO NPs) along with current-voltage characteristic curves of an assembled dye-sensitized solar cell (DSSC) are presented in this article. ZnO NPs were first synthesized with and without potassium nitrate (KNO3) salt by precipitation method from precursor solutions of zinc acetate and sodium hydroxide. Then, their thin films were deposited on FTO substrates from the paste made with acetic-acid glacial, and Triton X-100 in ethanol by doctor blade method. The X-ray diffraction (XRD) pattern of ZnO NPs prepared without KNO3 annealed at 500°C showed a hexagonal wurtzite structure with preferred orientation along (101) planes and crystallite size of 25 nm. Very similar XRD pattern was found for ZnO NPs prepared with KNO3. The crystallite size was found decreased to 17 nm for ZnO NPs made with KNO3 salt. Raman spectrum of ZnO NPs showed the presence of E2 high or E2 (2) peak at 437 cm-1. The optical band gaps of the ZnO thin films prepared from ZnO NPs with and without KNO3 were measured to be of 3.16 eV and 3.26 eV, respectively. After sensitizing the above-prepared ZnO films by dye extract of Artocarpus lakoocha, the dye-sensitized solar cells were prepared, and their performance was tested by measuring I-V curves under light illumination of the power density of 1000 W/m2. The measurement showed highest Isc and Voc of 44 μA and 326 mV, respectively.


2001 ◽  
Vol 693 ◽  
Author(s):  
M. E. Little ◽  
M. E. Kordesch

AbstractReactive sputtering was used to grow thin films of ScxGa1-xN with scandium concentrations of 20%-70% on quartz substrates at temperatures of 300-675 K. X-ray diffraction (XRD) of the films showed either weak or no structure, suggesting the films are amorphous or microcrystalline. Optical absorption spectra were taken of each sample and the optical band gap was determined. The band gap varied linearly with increasing Ga concentration between 2.0 and 3.5 eV. Ellipsometry was used to confirm the band gap measurements and provide optical constants in the range 250-1200 nm. ScN and GaN have different crystal structures (rocksalt and wurzite, respectively), and thus may form a heterogeneous mixture as opposed to an alloy. Since the XRD data were inconclusive, bilayers of ScN/GaN were grown and optical absorption spectra taken. A fundamental difference in the spectra between the bilayer films and alloy films was seen, suggesting the films are alloys, not herterogeneous mixtures.


2018 ◽  
Vol 766 ◽  
pp. 217-222
Author(s):  
Suphaporn Daothong

Iron oxide nanowires were synthesized on stainless steel mesh substrate using the thermal oxidation process at the varying temperature of 750°C for 60 min. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD pattern showed that the iron oxide nanowires exhibited the structure of alpha-Fe2O3 (hematite). SEM images indicated that the diameter and the length of the nanowires were 80 to 285 nm and more than 5 μm, respectively. The dye-sensitized solar cell (DSC) properties based on the nanowires substrate was also studied. It was found that the power conversion efficiency (η) of the device was 0.11%.


2016 ◽  
Vol 14 (1) ◽  
pp. 24
Author(s):  
Mariya Al Qibtiya ◽  
Lia Muliani ◽  
Jojo Hidayat

Pada tulisan ini, diuraikan karakteristik pasta TiO2 suhu rendah untuk aplikasi sel surya berbasis dye-sensitized yang dipreparasi dengan penambahan serbuk TiO2 reflektor. Penambahan TiO2 reflektor sebagai light scattering layer pada pasta dilakukan untuk melihat pengaruhnya terhadap karakteristik listrik sel surya yang dihasilkan. Preparasi pasta dilakukan menggunakan bahan komersial yaitu pasta T-Nanooxide D-L (Solaronix) dan serbuk pasta WER2-O (Dyesiol) sebagai bahan reflector. Bahan tersebut dianalisis struktur kristalnya. Hasil karakterisasi X-Ray Diffraction (XRD) menunjukan bahwa bahan TiO2 serbuk yang digunakan adalah nanokristal dengan struktur kristal anatase. Pasta ini dideposisi di atas permukaan plastik dan kaca konduktif (ITO-PET dan FTO) dengan metode doctor blade printing. Proses sintering lapisan TiO2 dilakukan pada suhu rendah yaitu 120 ˚C selama 4 jam. Morfologi permukaan lapisan TiO2 dianalisa menggunakan Scanning Electron Microscopy (SEM). Lapisan TiO2 yang terbentuk diaplikasikan pada DSSC sebagai fotoelektroda. Pewarnaan dengan larutan N-719 (Ruthenium Complex), lapisan elektroda kerja platina dan larutan elektrolit iodine. Karakteristik kurva I-V dengan ukuran sel daerah aktif 1 cm2 diukur menggunakan Sun Simulator AM1,5 dengan sumber cahaya Xenon dan intensitas 50 mW/cm2. Hasil pengukuran menunjukkan penambahan serbuk TiO2 reflektor dapat meningkatkan unjuk kerja sel surya fleksibel yang dihasilkan. Efisiensi terbaik DSSC yang dihasilkan adalah 0,166% untuk substrat plastik dan 0,167% untuk substrat kaca.


2008 ◽  
Vol 2008 ◽  
pp. 1-6 ◽  
Author(s):  
K. Uma Mahendra Kumar ◽  
M. Ghanashyam Krishna

Chromium metal-induced nanocrystallization of amorphous silicon (a-Si) thin films is reported. The nanocrystalline nature of these films is confirmed from X-ray diffraction and Raman spectroscopy. Significantly, the deconvolution of Raman spectra reveals that the thin films were crystallized in a mixed phase of cubic diamond and wurzite structure as evidenced by the lines at 512 and 496 cm−1, respectively. The crystallite sizes were between 4 to 8 nm. Optical properties of the crystallized silicon, derived from spectral transmittance curves, revealed high transmission in the region above the band gap. Optical band gap varied between 1.3 to 2.0 eV depending on the nature of crystallinity of these films and remained unaltered with increase in Cr addition from 5 to 30%. This signifies that the electronic structure of the nanocrystalline Silicon films is not affected considerably inspite of the presence of metal silicides and the process of crystallization.


Sign in / Sign up

Export Citation Format

Share Document