Study the Conduction Mechanism and the Electrical Response of Strained Nano-thin 3C-SiC Films on Si used as Surface Sensors

2008 ◽  
Vol 1129 ◽  
Author(s):  
Ronak Rahimi ◽  
Christopher M Miller ◽  
Alan Munger ◽  
Srikanth Raghavan ◽  
C D Stinespring ◽  
...  

AbstractVarious superior properties of SiC such as high thermal conductivity, chemical and thermal stability and mechanical robustness provide the basis for electronic and MEMS devices of novel design [1]. This work evaluates heterostructures that consist of a few nanometers-thick 3C-SiC films on silicon substrates. Nano-thin SiC films differ significantly in their electrical behavior compared to the bulk material [2], a finding that gives rise to a potential use of these films as surface sensors. To gain a better understanding of the effect of surface states on the electrical response of these thin, strained films, several metal-semiconductor-metal heterostructures have been examined under variable conditions. The nano-thin, strained films were grown using gas source molecular beam epitaxy. Reflection high-energy electron diffraction patterns obtained from several 3C-SiC films indicate that these films are strained nearly 3% relative to the SiC lattice constant. Al, Cr and Pt contacts to a nano-thin film 3C-SiC were deposited and characterized. I-V measurements of the strained nano-thin films demonstrate metal-semiconductor-metal characteristics. Band offsets due to biaxial tensile strain introduced within the 3C-SiC films were calculated and band diagrams incorporating strain effects were simulated. Electron affinity of 3C-SiC has been extracted from experimental I-V curves and is in good agreement with the value that has been calculated for a strained 3C-SiC film [3]. On the basis of experimental and simulation results, an empirical model for the current transport has been proposed. Fabricated devices have been characterized in a controlled environment under hydrogen flow and also in a reactive ambient, while heating the sample and oxidizing the surface, to investigate the effects of the environment on the surface states. Observed changes in I-V characteristics suggest that these nano-thin films can be used as surface sensors.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vishal Bhardwaj ◽  
Anupam Bhattacharya ◽  
Shivangi Srivastava ◽  
Vladimir V. Khovaylo ◽  
Jhuma Sannigrahi ◽  
...  

AbstractHalf-Heusler compounds exhibit a remarkable variety of emergent properties such as heavy-fermion behaviour, unconventional superconductivity and magnetism. Several of these compounds have been predicted to host topologically non-trivial electronic structures. Remarkably, recent theoretical studies have indicated the possibility to induce non-trivial topological surface states in an otherwise trivial half-Heusler system by strain engineering. Here, using magneto-transport measurements and first principles DFT-based simulations, we demonstrate topological surface states on strained [110] oriented thin films of YPdBi grown on (100) MgO. These topological surface states arise in an otherwise trivial semi-metal purely driven by strain. Furthermore, we observe the onset of superconductivity in these strained films highlighting the possibility of engineering a topological superconducting state. Our results demonstrate the critical role played by strain in engineering novel topological states in thin film systems for developing next-generation spintronic devices.


2002 ◽  
Vol 92 (6) ◽  
pp. 3304-3310 ◽  
Author(s):  
B. Balamurugan ◽  
B. R. Mehta ◽  
D. K. Avasthi ◽  
Fouran Singh ◽  
Akhilesh K. Arora ◽  
...  

Author(s):  
A. K. Rai ◽  
R. S. Bhattacharya ◽  
M. H. Rashid

Ion beam mixing has recently been found to be an effective method of producing amorphous alloys in the binary metal systems where the two original constituent metals are of different crystal structure. The mechanism of ion beam mixing are not well understood yet. Several mechanisms have been proposed to account for the observed mixing phenomena. The first mechanism is enhanced diffusion due to defects created by the incoming ions. Second is the cascade mixing mechanism for which the kinematicel collisional models exist in the literature. Third mechanism is thermal spikes. In the present work we have studied the mixing efficiency and ion beam induced amorphisation of Ni-Ti system under high energy ion bombardment and the results are compared with collisional models. We have employed plan and x-sectional veiw TEM and RBS techniques in the present work.


2001 ◽  
Vol 11 (PR11) ◽  
pp. Pr11-121-Pr11-125
Author(s):  
F. Abbott ◽  
A. F. Dégardin ◽  
A. De Luca ◽  
O. Schneegans ◽  
É. Caristan ◽  
...  

2017 ◽  
Vol 137 (1) ◽  
pp. 46-47
Author(s):  
Takeshi Kohno ◽  
Masato Mihara ◽  
Ataru Tanabe ◽  
Takashi Abe ◽  
Masanori Okuyama ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
pp. 1923-1930
Author(s):  
Austine Amukayia Mulama ◽  
Julius Mwakondo Mwabora ◽  
Andrew Odhiambo Oduor ◽  
Cosmas Mulwa Muiva ◽  
Boniface Muthoka ◽  
...  

 Selenium-based chalcogenides are useful in telecommunication devices like infrared optics and threshold switching devices. The investigated system of Ge5Se95-xZnx (0.0 ≤ x ≤ 4 at.%) has been prepared from high purity constituent elements. Thin films from the bulk material were deposited by vacuum thermal evaporation. Optical absorbance measurements have been performed on the as-deposited thin films using transmission spectra. The allowed optical transition was found to be indirect and the corresponding band gap energy determined. The variation of optical band gap energy with the average coordination number has also been investigated based on the chemical bonding between the constituents and the rigidity behaviour of the system’s network.


Author(s):  
Manik Goyal ◽  
Honggyu Kim ◽  
Timo Schumann ◽  
Luca Galletti ◽  
Anton A. Burkov ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 724
Author(s):  
Sara Massardo ◽  
Alessandro Cingolani ◽  
Cristina Artini

Rare earth-doped ceria thin films are currently thoroughly studied to be used in miniaturized solid oxide cells, memristive devices and gas sensors. The employment in such different application fields derives from the most remarkable property of this material, namely ionic conductivity, occurring through the mobility of oxygen ions above a certain threshold temperature. This feature is in turn limited by the association of defects, which hinders the movement of ions through the lattice. In addition to these issues, ionic conductivity in thin films is dominated by the presence of the film/substrate interface, where a strain can arise as a consequence of lattice mismatch. A tensile strain, in particular, when not released through the occurrence of dislocations, enhances ionic conduction through the reduction of activation energy. Within this complex framework, high pressure X-ray diffraction investigations performed on the bulk material are of great help in estimating the bulk modulus of the material, and hence its compressibility, namely its tolerance toward the application of a compressive/tensile stress. In this review, an overview is given about the correlation between structure and transport properties in rare earth-doped ceria films, and the role of high pressure X-ray diffraction studies in the selection of the most proper compositions for the design of thin films.


1990 ◽  
Vol 43 (5) ◽  
pp. 583
Author(s):  
GL Price

Recent developments in the growth of semiconductor thin films are reviewed. The emphasis is on growth by molecular beam epitaxy (MBE). Results obtained by reflection high energy electron diffraction (RHEED) are employed to describe the different kinds of growth processes and the types of materials which can be constructed. MBE is routinely capable of heterostructure growth to atomic precision with a wide range of materials including III-V, IV, II-VI semiconductors, metals, ceramics such as high Tc materials and organics. As the growth proceeds in ultra high vacuum, MBE can take advantage of surface science techniques such as Auger, RHEED and SIMS. RHEED is the essential in-situ probe since the final crystal quality is strongly dependent on the surface reconstruction during growth. RHEED can also be used to calibrate the growth rate, monitor growth kinetics, and distinguish between various growth modes. A major new area is lattice mismatched growth where attempts are being made to construct heterostructures between materials of different lattice constants such as GaAs on Si. Also described are the new techniques of migration enhanced epitaxy and tilted superlattice growth. Finally some comments are given On the means of preparing large area, thin samples for analysis by other techniques from MBE grown films using capping, etching and liftoff.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Paul Schmitt ◽  
Vivek Beladiya ◽  
Nadja Felde ◽  
Pallabi Paul ◽  
Felix Otto ◽  
...  

Ultra-thin metallic films are widely applied in optics and microelectronics. However, their properties differ significantly from the bulk material and depend on the substrate material. The nucleation, film growth, and layer properties of atomic layer deposited (ALD) iridium thin films are evaluated on silicon wafers, BK7, fused silica, SiO2, TiO2, Ta2O5, Al2O3, HfO2, Ru, Cr, Mo, and graphite to understand the influence of various substrate materials. This comprehensive study was carried out using scanning electron and atomic force microscopy, X-ray reflectivity and diffraction, four-point probe resistivity and contact angle measurements, tape tests, and Auger electron spectroscopy. Within few ALD cycles, iridium islands occur on all substrates. Nevertheless, their size, shape, and distribution depend on the substrate. Ultra-thin (almost) closed Ir layers grow on a Ta2O5 seed layer after 100 cycles corresponding to about 5 nm film thickness. In contrast, the growth on Al2O3 and HfO2 is strongly inhibited. The iridium growth on silicon wafers is overall linear. On BK7, fused silica, SiO2, TiO2, Ta2O5, Ru, Cr, and graphite, three different growth regimes are distinguishable. The surface free energy of the substrates correlates with their iridium nucleation delay. Our work, therefore, demonstrates that substrates can significantly tailor the properties of ultra-thin films.


Sign in / Sign up

Export Citation Format

Share Document