Micromorphology and Mineralogy of Fly Ash and Lime Stabilized Bentonite

1987 ◽  
Vol 113 ◽  
Author(s):  
Ray E. Ferrell ◽  
Ara Arman ◽  
Gokhan Baykal

ABSTRACTCompacted fly ash, lime, bentonite and water mixtures were cured at 23° and 50°C, for 1, 28, 90 and 180 days. Cementitious products and microstructure were observed by scanning electron microscopy, energy dispersive x-ray spectrometry and x-ray diffractometry. Unconfined compressive strength changes are correlated to the formation of new mineral phases. For bentonite-limefly ash mixtures, strength increased from 1050 kPa (I day) to 2,300 kPa (90 days) and then slightly increased to 2,400 kPa after 180 days at ∼ 230C. Ettringite is the most abundant mineral associated with the increased compressive strength.New minerals identified in the 23°C mixtures include calcium silicate hydrate - Type 1, afwillite and ettringite. Acicular crystals of these and other minerals were formed by the hydration of lime and fly ash in the montmorillonitic clay. The cementitious phases create a rigid framework joining spheres and clay aggregates. Continued reaction dissolves some of the spheres and slightly reduces the rigidity of the cured samples.

Author(s):  
Phoolwanti Nanda

Abstract: The usage of waste material for stabilizing black cotton soil has been a sustainable interest. Kota stone slurry is a waste from kota stone and fly ash is a waste from industries containing high amount of sodium and magnesium, was used as a soil stabilizer for blac cotton soil improvement in this study. This research investigated the effects of sizes and percentages of kota stone slurry mix and fly ash on the physical and strength properties, which included particle size distribution, Atterberg limits, compaction, and unconfined compressive strength (UCS) of blac cotton soil. Micro structural characterization, including the scanning electron microscopic, energy dispersive X-ray spectroscopy, and X-ray diffraction was conducted on both untreated and treated black cotton soil samples to examine the mechanism of strength development. The addition of kota stone slurry and fly ash reduced the water holding capacity, which then caused the reduction in soil plasticity (from 18 to 11%) and optimum water content (from 20 to 16%) along with the increase in peak dry density (from 1.66 to 1.74 Mg/m3). The strength of black cotton soil may increased from 50 to almost 220 kPa. The optimum kota stone slurry and fly ash contents, providing the highest UCS, were at 20 and 30% for 0.063 mm kota stone slurry and fly ash and 0.15 mm kota stone slurry and fly ash, respectively. The UCS improvement of treated marine clay is attributed to the formation of cementation compounds, mainly aluminum magnesium silicate hydrate (A–M–S–H). The outcome of this research will allow the use of RBT as a low-carbon soil stabilizer across civil engineering applications. Keywords: Stablization, Fly ash, kota stone slurry, Atterberg limits, Compaction, and unconfined compressive strength


2021 ◽  
Vol 28 (1) ◽  
pp. 83-95
Author(s):  
Qu Jili ◽  
Wang Junfeng ◽  
Batugin Andrian ◽  
Zhu Hao

Abstract Fine aggregates of construction waste and fly ash were selected as additives to modify the characteristics of Shanghai clayey soil as a composite. The laboratory tests on consistency index, maximum dry density, and unconfined compressive strength were carried out mainly for the purpose of comparing the modifying effect on the composite from fine aggregates of construction waste with that from fly ash. It is mainly concluded from test results that the liquid and plastic limit of the composites increase with the content of two additives. But their maximum dry density all decreases with the additive content. However, fine aggregates of construction waste can increase the optimum water content of the composites, while fly ash on the contrary. Finally, although the two additive all can increase the unconfined compressive strength of composites, fly ash has better effect. The current conclusions are also compared with previous studies, which indicates that the current research results are not completely the same as those from other researchers.


2012 ◽  
Vol 568 ◽  
pp. 392-395
Author(s):  
Ming Feng Zhong ◽  
Da Gen Su ◽  
Yi Xiang Zhao

Hydration activity of waste ceramic polishing powder at autocalved condition were studied by IR, XRD, SEM and EDS in civil engineering. The results shown that autoclaved condition is beneficial to inspire hydration ability of polishing powder, the more active silicon and aluminium were dissolved, and they were converted into low Ca/Si ratio calcium silicate hydrate, whose ratio of Ca/Si was 1.58, and the compressive strength of autoclaved silicate product made by the ceramic polishing powder was higher than that of fly ash.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Minerals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 58 ◽  
Author(s):  
Elzbieta Haustein ◽  
Aleksandra Kuryłowicz-Cudowska

The fly ash microspheres (FAMs) formed during the mineral transformation stage in coal combustion are hollow spherical particles with a density less than water. This paper presents the results of X-ray micro-computed tomography and an automatic image analysis system of the porosity in the structure of hardened concrete with microspheres. Concrete mixtures with ordinary Portland cement and two substitution rates of cement by microspheres—5% and 10%—are investigated. For all considered mixes, a constant water/binder ratio (w/b) equal to 0.50 was used. The distribution of the air voids and the compressive strength of the concrete were tested after 28 days. With the increasing mass of cement replacement by FAMs, the compressive strength decreases after 28 days. The total volume of the air voids in hardened concrete with fly ash microspheres tested by X-ray varies from 5.1% to 7.4%. The closed pores constitute more than 80% of the total content of air pores. The study proves that the use of microspheres grains with specific dimensions has a significant impact on concrete porosity. Their application in concrete technology can be an alternative aeration solution for fresh concrete mixes and an effective method for utilization.


2017 ◽  
Vol 888 ◽  
pp. 184-187
Author(s):  
Salwa Ismail ◽  
Mohammad Faizal Mohd Razali ◽  
Izwan Johari ◽  
Zainal Arifin Ahmad ◽  
Shah Rizal Kasim

In this study, the geopolymer mortars were synthesized with fly ash (FA) and silica powder as aluminosilicate sources and a combination of sodium hydroxide (NaOH) solution, sodium silicate (Na2SiO3) solution and distilled water as alkaline activator. Commercial sago was used as a pore former in the mortars. The percentage of sago used were 10, 20 and 30 wt% of FA. The amount of added water used in each mixture was 5% by weight of FA, NaOH solution and Na2SiO3 solution. The formed geopolymer mortars were cured for 1, 3 and 7 days and sintered at 1000 °C. X-ray fluoresence (XRF) shown that FA contains higher amount of silica (SiO2) and alumina (Al2O3) which is important as aluminosilicate sources. The properties of the geopolymer mortars before and after sintered at 1000 °C have been investigated. The results show that geopolymer mortars with 10% of sago content with curing time of 7 days and sintered at 1000 °C give the highest compressive strength of 13.5 MPa.


Sign in / Sign up

Export Citation Format

Share Document