Biocompatible Phosphorus-based Monomers for Radical Polymerization

2009 ◽  
Vol 1235 ◽  
Author(s):  
Claudia Dworak ◽  
Christian Heller ◽  
Franz Varga ◽  
Robert Liska

AbstractNovel biocompatible and biodegradable monomers based on phosphorus-containing vinyl esters and vinyl carbamates for radical photopolymerization were prepared. By photo-Differential Scanning Calorimetry (photo-DSC) the reactivity of the mono-, di- and trifunctional monomers was investigated. Furthermore, their cytotoxicity, mechanical properties and hydrolytic degradation behavior were evaluated, aiming at a future application of our compounds in the biomedical area.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2367
Author(s):  
Junhyuk Son ◽  
Dong-Yurl Yu ◽  
Yun-Chan Kim ◽  
Shin-Il Kim ◽  
Min-Su Kim ◽  
...  

In this study, the interfacial reactions and mechanical properties of solder joints after multiple reflows were observed to evaluate the applicability of the developed materials for high-temperature soldering for automotive electronic components. The microstructural changes and mechanical properties of Sn-Cu solders regarding Al(Si) addition and the number of reflows were investigated to determine their reliability under high heat and strong vibrations. Using differential scanning calorimetry, the melting points were measured to be approximately 227, 230, and 231 °C for the SC07 solder, SC-0.01Al(Si), and SC-0.03Al(Si), respectively. The cross-sectional analysis results showed that the total intermetallic compounds (IMCs) of the SC-0.03Al(Si) solder grew the least after the as-reflow, as well as after 10 reflows. Electron probe microanalysis and transmission electron microscopy revealed that the Al-Cu and Cu-Al-Sn IMCs were present inside the solders, and their amounts increased with increasing Al(Si) content. In addition, the Cu6Sn5 IMCs inside the solder became more finely distributed with increasing Al(Si) content. The Sn-0.5Cu-0.03Al(Si) solder exhibited the highest shear strength at the beginning and after 10 reflows, and ductile fracturing was observed in all three solders. This study will facilitate the future application of lead-free solders, such as an Sn-Cu-Al(Si) solder, in automotive electrical components.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2689-2694
Author(s):  
Karla A. Gaspar-Ovalle ◽  
Juan V. Cauich-Rodriguez ◽  
Armando Encinas

ABSTRACTNanofibrous mats of poly ε-caprolactone (PCL) were fabricated by electrospinning. The nanofiber structures were investigated and characterized by scanning electron microscope, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, static water-contact-angle analysis and mechanical properties. The results showed that the nanofibrous PCL is an ideal biopolymer for cell adhesion, owing to its biocompatibility, biodegradability, structural stability and mechanical properties. Differential scanning calorimetry results showed that the fibrous structure of PCL does not alter its crystallinity. Studies of the mechanical properties, wettability and degradability showed that the structure of the electrospun PCL improved the tensile modulus, tensile strength, wettability and biodegradability of the nanotemplates. To evaluate the nanofibrous structure of PCL on cell adhesion, osteoblasts cells were seeded on these templates. The results showed that both adhesion and proliferation of the cells is viable on these electrospun PCL membranes. Thus electrospinning is a relatively inexpensive and scalable manufacturing technique for submicron to nanometer diameter fibers, which can be of interest in the commodity industry.


RSC Advances ◽  
2020 ◽  
Vol 10 (36) ◽  
pp. 21487-21494
Author(s):  
F. Ścigalski ◽  
B. Jędrzejewska

Three photoinitiating systems based on new oxazolone derivatives have been developed and their performance in initiation of radical polymerization of acrylate monomers has been tested by differential scanning calorimetry.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1101 ◽  
Author(s):  
Przybysz ◽  
Hejna ◽  
Haponiuk ◽  
Formela

The modification of poly(ε-caprolactone) (PCL) was successfully conducted during reactive processing in the presence of dicumyl peroxide (DCP) or di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB). The peroxide initiators were applied in the various amounts of 0.5 or 1.0 pbw (part by weight) into the PCL matrix. The effects of the initiator type and its concentration on the structure and mechanical and thermal properties of PCL were investigated. To achieve a detailed and proper explication of this phenomenon, the decomposition and melting temperatures of DCP and BIB initiators were measured by differential scanning calorimetry. The conjecture of the branching or cross-linking of PCL structure via used peroxides was studied by gel fraction content measurement. Modification in the presence of BIB in PCL was found to effectively increase gel fraction. The result showed that the cross-linking of PCL started at a low content of BIB, while PCL modified by high DCP content was only partially cross-linked or branched. PCL branching and cross-linking were found to have a significant impact on the mechanical properties of PCL. However, the effect of used initiators on poly(ε-caprolactone) properties strongly depended on their structure and content. The obtained results indicated that, for the modification towards cross-linking/branching of PCL structure by using organic peroxides, the best mechanical properties were achieved for PCL modified by 0.5 pbw BIB or 1.0 pbw DCP, while the PCL modified by 1.0 pbw BIB possessed poor mechanical properties, as it was related to over cross-linking.


1986 ◽  
Vol 76 ◽  
Author(s):  
C. W. Wilkins ◽  
H. E. Bair ◽  
M. G. Chan ◽  
R. S. Hutton

ABSTRACTWe have studied some of the physical and mechanical properties of cyclized polybutadiene (CBR) dielectrics by dynamic mechanical analysis, thermal mechanical analysis, thermogravimetry, infrared analysis, and differential scanning calorimetry. Of interest is the difference in properties between thin (<30 μm) films which have been cured under vacuum and those which have been cured in air. Our results indicate that curing under vacuum prevents oxidation and reduces crosslinking. Vacuum cured films have 20% smaller moduli and 200 lower glass transition temperature than do films produced in air.


e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
Newton Luiz Dias Filho ◽  
Hermes Adolfo de Aquino

AbstractNon-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.13,9.15,15 .17,13] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (ε”) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.


2016 ◽  
Vol 721 ◽  
pp. 23-27 ◽  
Author(s):  
Ilya Kobykhno ◽  
Oleg Tolochko ◽  
Ekaterina Vasilyeva ◽  
Andrei Didenko ◽  
Danila Kuznetcov ◽  
...  

The paper experimentally studies the effect of meta and para- substitution of the amino groups in the diamine used in the synthesis of multiblock copolymers. The way for synthesis of new multiblock copolymers with the possibility of replacing the diamine in the polymer structure was shown. Thermal and mechanical properties of synthesized copolymers had been characterized by means of differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical thermal analysis and by nanoindentation and tensile test.


Sign in / Sign up

Export Citation Format

Share Document